Read by QxMD icon Read

bioprint OR bioprinter OR bioprinted OR bioprinting

Nicanor I Moldovan
Biofabrication of tissue analogues is aspiring to become a disruptive technology capable to solve standing biomedical problems, from generation of improved tissue models for drug testing to alleviation of the shortage of organs for transplantation. Arguably, the most powerful tool of this revolution is bioprinting, understood as the assembling of cells with biomaterials in three-dimensional structures. It is less appreciated, however, that bioprinting is not a uniform methodology, but comprises a variety of approaches...
March 13, 2018: Journal of Cellular and Molecular Medicine
Silvia Lopa, Carlotta Mondadori, Valerio Luca Mainardi, Giuseppe Talò, Marco Costantini, Christian Candrian, Wojciech Święszkowski, Matteo Moretti
Cartilage defects can impair the most elementary daily activities and, if not properly treated, can lead to the complete loss of articular function. The limitations of standard treatments for cartilage repair have triggered the development of stem cell-based therapies. In this scenario, the development of efficient cell differentiation protocols and the design of proper biomaterial-based supports to deliver cells to the injury site need to be addressed through basic and applied research to fully exploit the potential of stem cells...
2018: Stem Cells International
Huijun Li, Yu Jun Tan, Sijun Liu, Lin Li
A novel strategy to improve the adhesion between printed layers of 3D printed constructs is developed by exploiting the interaction between two oppositely charged hydrogels. Three anionic hydrogels (alginate, xanthan, kappa-carrageenan (Kca)) and three cationic hydrogels (chitosan, gelatin, gelatin methacrylate (GelMA)) are chosen in order to find the optimal combination of two oppositely charged hydrogels for the best 3D printability with strong interface bonding. Rheological properties and printability of the hydrogels, as well as structural integrity of printed constructs in cell culture medium, are studied as functions of polymer concentration and combination of hydrogels...
March 8, 2018: ACS Applied Materials & Interfaces
Pujiang Shi, Tan Yong Sheng Edgar, Wai Yee Yeong, Li Hoi Yeung, Augustinus Laude
ARPE-19 and Y79 cells were precisely and effectively delivered to form an in vitro retinal tissue model via 3D cell bioprinting technology. The samples were characterized by cell viability assay, hematoxylin and eosin (HE) and immunofluorescent staining, scanning electrical microscopy (SEM) and confocal microscopy etc. The bioprinted ARPE-19 cells formed a high-quality cell monolayer in 14 days. Manually seeded ARPE-19 cells were poorly controlled during and after cell seeding, and they aggregated to form uneven cell layer...
March 6, 2018: Journal of Tissue Engineering and Regenerative Medicine
Han Qiao, Tingting Tang
Cancer metastasis to bone is a three-dimensional (3D), multistep, dynamic process that requires the sequential involvement of three microenvironments, namely, the primary tumour microenvironment, the circulation microenvironment and the bone microenvironment. Engineered 3D approaches allow for a vivid recapitulation of in vivo cancerous microenvironments in vitro, in which the biological behaviours of cancer cells can be assessed under different metastatic conditions. Therefore, modelling bone metastasis microenvironments with 3D cultures is imperative for advancing cancer research and anti-cancer treatment strategies...
2018: Bone Research
P Selcan Gungor-Ozkerim, Ilyas Inci, Yu Shrike Zhang, Ali Khademhosseini, Mehmet Remzi Dokmeci
Bioprinting is an emerging technology with various applications in making functional tissue constructs to replace injured or diseased tissues. It is a relatively new approach that provides high reproducibility and precise control over the fabricated constructs in an automated manner, potentially enabling high-throughput production. During the bioprinting process, a solution of a biomaterial or a mixture of several biomaterials in the hydrogel form, usually encapsulating the desired cell types, termed the bioink, is used for creating tissue constructs...
March 1, 2018: Biomaterials Science
Michael Raghunath, Markus Rimann, Katarzyna S Kopanska, Sandra Laternser
Bioprinting is the technology of choice for realizing functional tissues such as vascular system, muscle, cartilage and bone. In the future, bioprinting will influence the way we engineer tissues and bring it to a new level of physiological relevance. That was the topic of the 2017 TEDD Annual Meeting at ZHAW Waedenswil on 8th and 9th November. In an exciting workshop, the two companies regenHU Ltd. and CELLINK gave us an insight into highly topical applications and collaborations in this domain.
February 1, 2018: Chimia
Gary Chinga-Carrasco
Three-dimensional (3D) printing has rapidly emerged as a new technology with a wide range of applications that includes biomedicine. Some common 3D printing methods are based on the suitability of biopolymers to be extruded through a nozzle to construct a 3D structure layer by layer. Nanocelluloses with specific rheological characteristics are suitable components to form inks for 3D printing. This review considers various nanocelluloses that have been proposed for 3D printing with a focus on the potential advantages, limitations, and requirements when used for biomedical devices and when used in contact with the human body...
February 28, 2018: Biomacromolecules
Min Zeng, Sha Jin, Kaiming Ye
Three-dimensional (3D) bioprinting enables the creation of tissue constructs with heterogeneous compositions and complex architectures. It was initially used for preparing scaffolds for bone tissue engineering. It has recently been adopted to create living tissues, such as cartilage, skin, and heart valve. To facilitate vascularization, hollow channels have been created in the hydrogels by 3D bioprinting. This review discusses the state of the art of the technology, along with a broad range of biomaterials used for 3D bioprinting...
February 1, 2018: SLAS Technology
David Chimene, Charles W Peak, James Gentry, James K Carrow, Lauren M Cross, Eli Mondragon, Guinea B C Cardoso, Roland Kaunas, Akhilesh K Gaharwar
We introduce an enhanced nanoengineered ionic covalent entanglement (NICE) bioink for the fabrication of mechanically stiff and elastomeric 3D biostructures. NICE bioink formulations combine nanocomposite and ionic covalent entanglement (ICE) strengthening mechanisms to print customizable cell-laden constructs for tissue engineering with high structural fidelity and mechanical stiffness. Nanocomposite and ICE strengthening mechanisms complement each other through their synergistic interactions, improving mechanical strength, elasticity, toughness, and flow properties beyond the sum of the effects of both reinforcement techniques alone...
February 20, 2018: ACS Applied Materials & Interfaces
Xuan Zhou, Haitao Cui, Margaret Nowicki, Shida Miao, Se-Jun Lee, Fahed Masood, Brent T Harris, Lijie Grace Zhang
Central nerve repair and regeneration remain challenging problems worldwide largely because of the extremely weak inherent regenerative capacity and accompanying fibrosis of native nerves. Inadequate solutions to unmet needs for clinical therapeutics encourage the development of novel strategies to promote nerve regeneration. Recently, 3D bioprinting techniques, as one of a set of valuable tissue engineering technologies, have shown great promise toward fabricating complex and customizable artificial tissue scaffolds...
February 20, 2018: ACS Applied Materials & Interfaces
Zhan Wang, Sang Jin Lee, Heng-Jie Cheng, James J Yoo, Anthony Atala
Bioengineering of a functional cardiac tissue composed of primary cardiomyocytes has great potential for myocardial regeneration and in vitro tissue modeling. However, its applications remain limited because the cardiac tissue is a highly organized structure with unique physiologic, biomechanical, and electrical properties. In this study, we undertook a proof-of-concept study to develop a contractile cardiac tissue with cellular organization, uniformity, and scalability by using three-dimensional (3D) bioprinting strategy...
February 13, 2018: Acta Biomaterialia
Hugo Oliveira, Nathalie Dusserre, Davit Hakobyan, Jean-Christophe Fricain
No abstract text is available yet for this article.
February 2018: Médecine Sciences: M/S
Cancan Xu, Wenhan Lee, Guohao Dai, Yi Hong
Cell printing is becoming a common technique to fabricate cellularized printed-scaffold for biomedical application. There are still significant challenges in soft tissue bioprinting using hydrogels which requires live cells inside the hydrogels. Moreover, the resilient mechanical properties from hydrogels are also required to mechanically mimic the native soft tissues. Herein, we developed a visible-light crosslinked, single-network, biodegradable hydrogel with high elasticity and flexibility for cell printing, which is different from previous highly elastic hydrogel with double-network and two-components...
February 16, 2018: ACS Applied Materials & Interfaces
Wei Zhu, Haitao Cui, Benchaa Boualam, Fahed Masood, Erin Flynn, Raj Rao, Zhiyong Zhang, Lijie Grace Zhang
Cartilage tissue is prone to degradation and has little capacity for self-healing due to its avascularity. Tissue engineering, which provides artificial scaffolds to repair injured tissues, is a novel and promising strategy for cartilage repair. 3D bioprinting offers even greater potential for repairing degenerative tissue by simultaneously integrating living cells, biomaterials, and biological cues to provide a customized scaffold. With regard to cell selection, mesenchymal stem cells (MSCs) hold great capacity for differentiating into a variety of cell types, including chondrocytes, and could therefore be utilized as a cartilage cell source in 3D bioprinting...
February 15, 2018: Nanotechnology
Abdel Rahman Abdel Fattah, Sarah Mishriki, Tobias Kammann, Rakesh P Sahu, Fei Geng, Ishwar K Puri
A magnet array is employed to manipulate diamagnetic cells that are contained in paramagnetic medium to demonstrate for the first time the contactless bioprinting of three-dimensional (3D) cellular structures and co-cultures of breast cancer MCF-7 and endothelial HUVEC at prescribed locations on tissue culture treated well plates. Sequential seeding of different cell lines and the spatial displacement of the magnet array creates co-cultured cellular structures within a well without using physically intrusive well inserts...
February 15, 2018: Biomaterials Science
Monica A Serban, Aleksander Skardal
Hyaluronan is a ubiquitous constituent of mammalian extracellular matrices and, because of its excellent intrinsic biocompatibility and chemical modification versatility, has been widely employed in a multitude of biomedical applications. In this article, we will survey the approaches used to tailor hyaluronan to specific needs of tissue engineering, regenerative and reconstructive medicine and overall biomedical research. We will also describe recent examples of applications in these broader areas, such as 3D cell culture, bioprinting, organoid biofabrication, and precision medicine that are facilitated by the use of hyaluronan as a biomaterial...
February 10, 2018: Matrix Biology: Journal of the International Society for Matrix Biology
Neerajha Nagarajan, Agnes Dupret-Bories, Erdem Karabulut, Pinar Zorlutuna, Nihal Engin Vrana
The impact of additive manufacturing in our lives has been increasing constantly. One of the frontiers in this change is the medical devices. 3D printing technologies not only enable the personalization of implantable devices with respect to patient-specific anatomy, pathology and biomechanical properties but they also provide new opportunities in related areas such as surgical education, minimally invasive diagnosis, medical research and disease models. In this review, we cover the recent clinical applications of 3D printing with a particular focus on implantable devices...
February 8, 2018: Biotechnology Advances
Lin Ho, Shan-Hui Hsu
3D bioprinting is a technique which enables the direct printing of biodegradable materials with cells into 3D tissue. So far there is no cell reprogramming in situ performed with the 3D bioprinting process. Forkhead box D3 (FoxD3) is a transcription factor and neural crest marker, which was reported to reprogram human fibroblasts into neural crest stem-like cells. In this study, we synthesized a new biodegradable thermo-responsive waterborne polyurethane (PU) gel as a bioink. FoxD3 plasmids and human fibroblasts were co-extruded with the PU hydrogel through the syringe needle tip for cell reprogramming...
February 6, 2018: Acta Biomaterialia
Geoffrey Potjewyd, Samuel Moxon, Tao Wang, Marco Domingos, Nigel M Hooper
Neurovascular dysfunction is a central process in the pathogenesis of stroke and most neurodegenerative diseases, including Alzheimer's disease. The multicellular neurovascular unit (NVU) combines the neural, vascular and extracellular matrix (ECM) components in an important interface whose correct functioning is critical to maintain brain health. Tissue engineering is now offering new tools and insights to advance our understanding of NVU function. Here, we review how the use of novel biomaterials to mimic the mechanical and functional cues of the ECM, coupled with precisely layered deposition of the different cells of the NVU through 3D bioprinting, is revolutionising the study of neurovascular function and dysfunction...
February 5, 2018: Trends in Biotechnology
Fetch more papers »
Fetching more papers... Fetching...
Read by QxMD. Sign in or create an account to discover new knowledge that matter to you.
Remove bar
Read by QxMD icon Read

Search Tips

Use Boolean operators: AND/OR

diabetic AND foot
diabetes OR diabetic

Exclude a word using the 'minus' sign

Virchow -triad

Use Parentheses

water AND (cup OR glass)

Add an asterisk (*) at end of a word to include word stems

Neuro* will search for Neurology, Neuroscientist, Neurological, and so on

Use quotes to search for an exact phrase

"primary prevention of cancer"
(heart or cardiac or cardio*) AND arrest -"American Heart Association"