Read by QxMD icon Read

BER pathway

Wei He, Peng Huang, Dinghua Liu, Lingling Zhong, Rongbin Yu, Jianan Li
Background: Base excision repair (BER) is the primary DNA repair system with the ability to fix base lesions caused by oxidative damage. Genetic variants influencing the BER pathway may affect the susceptibility and the outcomes of ischemic stroke. Here, we examined how single nucleotide polymorphisms (SNPs) associated with BER impact susceptibility and short-term recovery of ischemic stroke. Methods: We selected 320 ischemic stroke patients and 303 controls. Then we genotyped SNPs of NEIL1 rs4462560, NEIL3 rs12645561 and XRCC1 rs25487 in both groups...
October 17, 2016: International Journal of Environmental Research and Public Health
Abdullah M Alhadheq, Jilani Purusottapatnam Shaik, Abdullah Alamri, Abdulrahman M Aljebreen, Othman Alharbi, Majid A Almadi, Faten Alhadeq, Nahla A Azzam, Abdelhabib Semlali, Mohammad Alanazi, Mohammad D Bazzi, Narasimha Reddy Parine
Background. DNA repair systems are essential for each cell to repair and maintain the genome integrity. Base excision repair pathway is one of the crucial pathways to maintain genome integrity and PARP-1 plays a key role in BER pathway. The purpose of this study is to evaluate the association between polymorphisms in PARP-1 3'untranslated region (3'UTR) SNP rs8679 and its expression in colorectal cancer. Methods. Genotyping and gene expression were performed using TaqMan assays. The effects of age, gender, and tumor location were evaluated in cases and controls regarding the genotyping results...
2016: Disease Markers
Wynand Paul Roos, Andrea Krumm
Histone/protein deacetylases play multiple roles in regulating gene expression and protein activation and stability. Their deregulation during cancer initiation and progression cause resistance to therapy. Here, we review the role of histone deacetylases (HDACs) and the NAD(+) dependent sirtuins (SIRTs) in the DNA damage response (DDR). These lysine deacetylases contribute to DNA repair by base excision repair (BER), nucleotide excision repair (NER), mismatch repair (MMR), non-homologous end joining (NHEJ), homologous recombination (HR) and interstrand crosslink (ICL) repair...
October 13, 2016: Nucleic Acids Research
Peng Mao, John J Wyrick
DNA repair is critical to maintain genome stability. In eukaryotic cells, DNA repair is complicated by the packaging of the DNA 'substrate' into chromatin. DNA repair pathways utilize different mechanisms to overcome the barrier presented by chromatin to efficiently locate and remove DNA lesions in the genome. DNA excision repair pathways are responsible for repairing a majority of DNA lesions arising in the genome. Excision repair pathways include nucleotide excision repair (NER) and base excision repair (BER), which repair bulky and non-bulky DNA lesions, respectively...
October 12, 2016: FEMS Yeast Research
Jenq-Lin Yang, Wei-Yu Chen, Yin-Ping Chen, Chao-Ying Kuo, Shang-Der Chen
Glucagon-like peptide-1 (GLP-1) is an intestinal-secreted incretin that increases cellular glucose up-take to decrease blood sugar. Recent studies, however, suggest that the function of GLP-1 is not only to decrease blood sugar, but also acts as a neurotrophic factor that plays a role in neuronal survival, neurite outgrowth, and protects synaptic plasticity and memory formation from effects of β-amyloid. Oxidative DNA damage occurs during normal neuron-activity and in many neurological diseases. Our study describes how GLP-1 affected the ability of neurons to ameliorate oxidative DNA damage...
2016: Theranostics
Jörg Fahrer, Bernd Kaina
Colorectal cancer (CRC) is one of the most frequently diagnosed cancers, which is causally linked to dietary habits, notably the intake of processed and red meat. Processed and red meat contain dietary carcinogens, including heterocyclic aromatic amines (HCAs) and N-nitroso compounds (NOC). NOC are agents that induce various N-methylated DNA adducts and O(6)-methylguanine (O(6)-MeG), which are removed by base excision repair (BER) and O(6)-methylguanine-DNA methyltransferase (MGMT), respectively. HCAs such as the highly mutagenic 2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine (PhIP) cause bulky DNA adducts, which are removed from DNA by nucleotide excision repair (NER)...
October 6, 2016: Food and Chemical Toxicology
Shiladitya Sengupta, Anil K Mantha, Heyu Song, Shrabasti Roychoudhury, Somsubhra Nath, Sutapa Ray, Kishor K Bhakat
Apurinic/apyrimidinic (AP) sites are frequently generated in the genome by spontaneous depurination/depyrimidination or after removal of oxidized/modified bases by DNA glycosylases during the base excision repair (BER) pathway. Unrepaired AP sites are mutagenic and block DNA replication and transcription. The primary enzyme to repair AP sites in mammalian cells is AP endonuclease (APE1), which plays a key role in this repair pathway. Although overexpression of APE1 in diverse cancer types and its association with chemotherapeutic resistance are well documented, alteration of posttranslational modification of APE1 and modulation of its functions during tumorigenesis are largely unknown...
September 19, 2016: Oncotarget
Sukumaran Anil, P B Gopikrishnan, Ashik Bin Basheer, B G Vidyullatha, Yahya A Alogaibi, Elna P Chalisserry, Fawad Javed, M Hn Dalati, Sajith Vellappally, Mohamed Ibrahim Hashem, Darshan Devang Divakar
BACKGROUND: Oral cancers account for approximately 2% of all cancers diagnosed each year; however, the vast majority (80%) of the affected individuals are smokers whose risk of developing a lesion is five to nine times greater than that of non-smokers. Tobacco smoke contains numerous carcinogens that cause DNA damage, including oxidative lesions that are removed effectively by the base-excision repair (BER) pathway, in which poly (ADP-ribose) polymerase 1 (PARP-1), plays key roles. Genetic variations in the genes encoding DNA repair enzymes may alter their functions...
2016: Asian Pacific Journal of Cancer Prevention: APJCP
Y Somnay, S Lubner, H Gill, J B Matsumura, H Chen
Monoagent DNA-alkylating chemotherapies like dacarbazine are among a paucity of medical treatments for advanced carcinoid tumors, but are limited by host toxicity and intrinsic chemoresistance through the base excision repair (BER) pathway via poly (ADP-ribose) polymerase (PARP). Hence, inhibitors of PARP may potentiate DNA-damaging agents by blocking BER and DNA restoration. We show that the PARP inhibitor ABT-888 (Veliparib) enhances the cytotoxic effects of dacarbazine in carcinoids. Two human carcinoid cell lines (BON and H727) treated with a combination of ABT-888 and dacarbazine resulted in synergistic growth inhibition signified by combination indices <1 on the Chou-Talalay scale...
September 16, 2016: Cancer Gene Therapy
Mark R Kelley, James H Wikel, Chunlu Guo, Karen E Pollok, Barbara J Bailey, Randy Wireman, Melissa L Fishel, Michael R Vasko
Chemotherapy-induced peripheral neuropathy (CIPN) is a potentially debilitating side effect of a number of chemotherapeutic agents. There are currently no U.S. Food and Drug Administration-approved interventions or prevention strategies for CIPN. Although the cellular mechanisms mediating CIPN remain to be determined, several lines of evidence support the notion that DNA damage caused by anticancer therapies could contribute to the neuropathy. DNA damage in sensory neurons after chemotherapy correlates with symptoms of CIPN...
November 2016: Journal of Pharmacology and Experimental Therapeutics
Diana Mihaela Buzas
Iron-sulfur (Fe-S) clusters are ancient cofactors present in all kingdoms of life. Both the Fe-S cluster assembly machineries and target apoproteins are distributed across different subcellular compartments. The essential function of Fe-S clusters in nuclear enzymes is particularly difficult to study. The base excision repair (BER) pathway guards the integrity of DNA; enzymes from the DEMETER family of DNA glycosylases in plants are Fe-S cluster-dependent and extend the BER repertowere to excision of 5-methylcytosine (5mC)...
October 13, 2016: Genes & Genetic Systems
Yanhao Lai, Helen Budworth, Jill M Beaver, Nelson L S Chan, Zunzhen Zhang, Cynthia T McMurray, Yuan Liu
Studies in knockout mice provide evidence that MSH2-MSH3 and the BER machinery promote trinucleotide repeat (TNR) expansion, yet how these two different repair pathways cause the mutation is unknown. Here we report the first molecular crosstalk mechanism, in which MSH2-MSH3 is used as a component of the BER machinery to cause expansion. On its own, pol β fails to copy TNRs during DNA synthesis, and bypasses them on the template strand to cause deletion. Remarkably, MSH2-MSH3 not only stimulates pol β to copy through the repeats but also enhances formation of the flap precursor for expansion...
2016: Nature Communications
KarryAnne K Belanger, Bill T Ameredes, Istvan Boldogh, Leopoldo Aguilera-Aguirre
Asthma is characterized by reversible airway narrowing, shortness of breath, wheezing, coughing, and other symptoms driven by chronic inflammatory processes, commonly triggered by allergens. In 90% of asthmatics, most of these symptoms can also be triggered by intense physical activities and severely exacerbated by environmental factors. This condition is known as exercise-induced asthma (EIA). Current theories explaining EIA pathogenesis involve osmotic and/or thermal alterations in the airways caused by changes in respiratory airflow during exercise...
2016: Mediators of Inflammation
Aishwarya Prakash, Vy Bao Cao, Sylvie Doublié
The NEIL1 DNA glycosylase is one of eleven mammalian DNA glycosylases that partake in the first step of the base excision repair (BER) pathway. NEIL1 recognizes and cleaves mainly oxidized pyrimidines from DNA. The past decade has witnessed the identification of an increasing number of post-translational modifications (PTMs) in BER enzymes including phosphorylation, acetylation, and sumoylation, which modulate enzyme function. In this work, we performed the first comprehensive analysis of phosphorylation sites in human NEIL1 expressed in human cells...
2016: PloS One
Long-Xiu Yang, Xiao Zhang, Gang Zhao
BACKGROUND: Ginsenoside Rd (GSRd), one of the main active ingredients in traditional Chinese herbal Panax ginseng, has been found to have therapeutic effects on ischemic stroke. However, the molecular mechanisms of GSRd's neuroprotective function remain unclear. Ischemic stroke-induced oxidative stress results in DNA damage, which triggers cell death and contributes to poor prognosis. Oxidative DNA damage is primarily processed by the base excision repair (BER) pathway. Three of the five major DNA glycosylases that initiate the BER pathway in the event of DNA damage from oxidation are the endonuclease VIII-like (NEIL) proteins...
August 20, 2016: Chinese Medical Journal
Alexander C Drohat, Christopher T Coey
Base excision repair (BER) is one of several DNA repair pathways found in all three domains of life. BER counters the mutagenic and cytotoxic effects of damage that occurs continuously to the nitrogenous bases in DNA, and its critical role in maintaining genomic integrity is well established. However, BER also performs essential functions in processes other than DNA repair, where it acts on naturally modified bases in DNA. A prominent example is the central role of BER in mediating active DNA demethylation, a multistep process that erases the epigenetic mark 5-methylcytosine (5mC), and derivatives thereof, converting them back to cytosine...
August 8, 2016: Chemical Reviews
Zhimin Tong, Huanxi Shen, Dandan Yang, Feng Zhang, Ying Bai, Qian Li, Jian Shi, Hengdong Zhang, Baoli Zhu
Acute or long-term exposure to N,N-dimethylformamide (DMF) can induce abnormal liver function. It is well known that DMF is mainly metabolized in the liver and thereby produces reactive oxygen species (ROS). The base excision repair (BER) pathway is regarded as a very important pathway involved in repairing ROS-induced DNA damage. Several studies have explored the associations between GSTM1, GSTT1, CYP2E1 polymorphisms and DMF-induced abnormal liver function; however, little is known about how common hOGG1, XRCC1 and APE1 polymorphisms and DMF induce abnormal liver function...
2016: International Journal of Environmental Research and Public Health
Vicky Lutchman, Pamela Dakik, Mélissa McAuley, Berly Cortes, George Ferraye, Leonid Gontmacher, David Graziano, Fatima-Zohra Moukhariq, Éric Simard, Vladimir I Titorenko
Our recent study has revealed six plant extracts that slow yeast chronological aging more efficiently than any chemical compound yet described. The rate of aging in yeast is controlled by an evolutionarily conserved network of integrated signaling pathways and protein kinases. Here, we assessed how single-gene-deletion mutations eliminating each of these pathways and kinases affect the aging-delaying efficiencies of the six plant extracts. Our findings imply that these extracts slow aging in the following ways: 1) plant extract 4 decreases the efficiency with which the pro-aging TORC1 pathway inhibits the anti-aging SNF1 pathway; 2) plant extract 5 mitigates two different branches of the pro-aging PKA pathway; 3) plant extract 6 coordinates processes that are not assimilated into the network of presently known signaling pathways/protein kinases; 4) plant extract 8 diminishes the inhibitory action of PKA on SNF1; 5) plant extract 12 intensifies the anti-aging protein kinase Rim15; and 6) plant extract 21 inhibits a form of the pro-aging protein kinase Sch9 that is activated by the pro-aging PKH1/2 pathway...
July 18, 2016: Oncotarget
Jennifer A Calvo, Mariacarmela Allocca, Kimberly R Fake, Sureshkumar Muthupalani, Joshua J Corrigan, Roderick T Bronson, Leona D Samson
Nephrotoxicity is a common toxic side-effect of chemotherapeutic alkylating agents. Although the base excision repair (BER) pathway is essential in repairing DNA alkylation damage, under certain conditions the initiation of BER produces toxic repair intermediates that damage healthy tissues. We have shown that the alkyladenine DNA glycosylase, Aag (a.k.a. Mpg), an enzyme that initiates BER, mediates alkylation-induced whole-animal lethality and cytotoxicity in the pancreas, spleen, retina, and cerebellum, but not in the kidney...
July 6, 2016: Oncotarget
Tonje Skarpengland, Tuva B Dahl, Mona Skjelland, Katja Scheffler, Mirta Mittelsted Leal de Sousa, Ida Gregersen, Anna Kuśnierczyk, Animesh Sharma, Geir Slupphaug, Lars Eide, Filip M Segers, Karolina Ryeng Skagen, Christen P Dahl, David Russell, Lasse Folkersen, Kirsten Krohg-Sørensen, Sverre Holm, Magnar Bjørås, Pål Aukrust, Bente Halvorsen
BACKGROUND: Lesional and systemic oxidative stress has been implicated in the pathogenesis of atherosclerosis, potentially leading to accumulation of DNA base lesions within atherosclerotic plaques. Although base excision repair (BER) is a major pathway counteracting oxidative DNA damage, our knowledge on BER and accumulation of DNA base lesions in clinical atherosclerosis is scarce. Here, we evaluated the transcriptional profile of a wide spectrum of BER components as well as DNA damage accumulation in atherosclerotic and non-atherosclerotic arteries...
August 2016: Free Radical Biology & Medicine
Fetch more papers »
Fetching more papers... Fetching...
Read by QxMD. Sign in or create an account to discover new knowledge that matter to you.
Remove bar
Read by QxMD icon Read

Search Tips

Use Boolean operators: AND/OR

diabetic AND foot
diabetes OR diabetic

Exclude a word using the 'minus' sign

Virchow -triad

Use Parentheses

water AND (cup OR glass)

Add an asterisk (*) at end of a word to include word stems

Neuro* will search for Neurology, Neuroscientist, Neurological, and so on

Use quotes to search for an exact phrase

"primary prevention of cancer"
(heart or cardiac or cardio*) AND arrest -"American Heart Association"