keyword
MENU ▼
Read by QxMD icon Read
search

NHEJ pathway

keyword
https://www.readbyqxmd.com/read/28645381/examining-dna-double-strand-break-repair-in-a-cell-cycle-dependent-manner
#1
Janapriya Saha, Shih-Ya Wang, Anthony J Davis
DNA double-strand breaks (DSBs) are deleterious DNA lesions that must be properly repaired to maintain genome stability. Agents, generated both exogenously (environmental radiation, dental X-rays, etc.) and endogenously (reactive oxygen species, DNA replication, V(D)J recombination, etc.), induce numerous DSBs every day. To counter these DSBs, there are two major repair pathways in mammalian cells, nonhomologous end joining (NHEJ) and homologous recombination (HR). NHEJ directly mediates the religation of the broken DNA molecule and is active in all phases of the cell cycle...
2017: Methods in Enzymology
https://www.readbyqxmd.com/read/28641126/dna-requirements-for-interaction-of-the-c-terminal-region-of-ku80-with-the-dna-dependent-protein-kinase-catalytic-subunit-dna-pkcs
#2
Sarvan Kumar Radhakrishnan, Susan P Lees-Miller
Non-homologous end joining (NHEJ) is the major pathway for the repair of ionizing radiation induced DNA double strand breaks (DSBs) in human cells. Critical to NHEJ is the DNA-dependent interaction of the Ku70/80 heterodimer with the DNA-dependent protein kinase catalytic subunit (DNA-PKcs) to form the DNA-PK holoenzyme. However, precisely how Ku recruits DNA-PKcs to DSBs ends to enhance its kinase activity has remained enigmatic, with contradictory findings reported in the literature. Here we address the role of the Ku80 C-terminal region (CTR) in the DNA-dependent interaction of Ku70/80 with DNA-PKcs using purified components and defined DNA structures...
June 9, 2017: DNA Repair
https://www.readbyqxmd.com/read/28634159/a-role-for-the-nonsense-mediated-mrna-decay-pathway-in-maintaining-genome-stability-in-caenorhabditis-elegans
#3
Víctor González-Huici, Bin Wang, Anton Gartner
Ionizing radiation (IR) is commonly used in cancer therapy and is a main source of DNA double-strand-breaks (DSBs), one of the most toxic forms of DNA damage. We have used Caenorhabditis elegans as an invertebrate model to identify novel factors required for repair of DNA damage inflicted by IR. We have performed an unbiased genetic screen, finding that smg-1 mutations confer strong hypersensitivity to IR. SMG-1 is a phosphoinositide-3 kinase (PI3K) kinase involved in mediating nonsense-mediated mRNA decay (NMD) of transcripts containing premature stop codons and related to the ATM and ATR kinases which are at the apex of DNA damage signalling pathways...
June 20, 2017: Genetics
https://www.readbyqxmd.com/read/28625156/heteroduplex-cleavage-assay-for-screening-of-probable-zygosities-resulting-from-crispr-mutations-in-diploid-single-cell-lines
#4
Kyle D Luttgeharm, Kit-Sum Wong, Steve Siembieda
The most common gene editing methods, such as CRISPR, involve random repair of an induced double-stranded DNA break through the non-homologous end joining (NHEJ) repair pathway, resulting in small insertions/deletions. In diploid cells, these mutations can take on one of three zygosities: monoallelic, diallelic heterozygous, or diallelic homozygous. While many advances have been made in CRISPR delivery systems and gene editing efficiency, little work has been done to streamline detection of gene editing events...
June 1, 2017: BioTechniques
https://www.readbyqxmd.com/read/28624213/crispr-cas9-loxp-mediated-gene-editing-as-a-novel-site-specific-genetic-manipulation-tool
#5
Fayu Yang, Changbao Liu, Ding Chen, Mengjun Tu, Haihua Xie, Huihui Sun, Xianglian Ge, Lianchao Tang, Jin Li, Jiayong Zheng, Zongming Song, Jia Qu, Feng Gu
Cre-loxP, as one of the site-specific genetic manipulation tools, offers a method to study the spatial and temporal regulation of gene expression/inactivation in order to decipher gene function. CRISPR/Cas9-mediated targeted genome engineering technologies are sparking a new revolution in biological research. Whether the traditional site-specific genetic manipulation tool and CRISPR/Cas9 could be combined to create a novel genetic tool for highly specific gene editing is not clear. Here, we successfully generated a CRISPR/Cas9-loxP system to perform gene editing in human cells, providing the proof of principle that these two technologies can be used together for the first time...
June 16, 2017: Molecular Therapy. Nucleic Acids
https://www.readbyqxmd.com/read/28604711/the-anaphase-promoting-complex-impacts-repair-choice-by-protecting-ubiquitin-signalling-at-dna-damage-sites
#6
Kyungsoo Ha, Chengxian Ma, Han Lin, Lichun Tang, Zhusheng Lian, Fang Zhao, Ju-Mei Li, Bei Zhen, Huadong Pei, Suxia Han, Marcos Malumbres, Jianping Jin, Huan Chen, Yongxiang Zhao, Qing Zhu, Pumin Zhang
Double-strand breaks (DSBs) are repaired through two major pathways, homology-directed recombination (HDR) and non-homologous end joining (NHEJ). While HDR can only occur in S/G2, NHEJ can happen in all cell cycle phases (except mitosis). How then is the repair choice made in S/G2 cells? Here we provide evidence demonstrating that APC(Cdh1) plays a critical role in choosing the repair pathways in S/G2 cells. Our results suggest that the default for all DSBs is to recruit 53BP1 and RIF1. BRCA1 is blocked from being recruited to broken ends because its recruitment signal, K63-linked poly-ubiquitin chains on histones, is actively destroyed by the deubiquitinating enzyme USP1...
June 12, 2017: Nature Communications
https://www.readbyqxmd.com/read/28580318/targeting-ongoing-dna-damage-in-multiple-myeloma-effects-of-dna-damage-response-inhibitors-on-plasma-cell-survival
#7
Ana Belén Herrero, Norma Carmen Gutiérrez
Human myeloma cell lines (HMCLs) and a subset of myeloma patients with poor prognosis exhibit high levels of replication stress (RS), leading to DNA damage. In this study, we confirmed the presence of DNA double-strand breaks (DSBs) in several HMCLs by measuring γH2AX and RAD51 foci and analyzed the effect of various inhibitors of the DNA damage response on MM cell survival. Inhibition of ataxia telangiectasia and Rad3-related protein (ATR), the main kinase mediating the response to RS, using the specific inhibitor VE-821 induced more cell death in HMCLs than in control lymphoblastoid cells and U266, an HMCL with a low level of DNA damage...
2017: Frontiers in Oncology
https://www.readbyqxmd.com/read/28574327/intrinsic-line-1-hypomethylation-and-decreased-brca1-expression-are-associated-with-dna-repair-delay-in-irradiated-thyroid-cells
#8
Ricardo Cortez Cardoso Penha, Sheila Coelho Soares Lima, Mariana Boroni, Renata Ramalho-Oliveira, João P Viola, Denise Pires de Carvalho, Alfredo Fusco, Luis Felipe Ribeiro Pinto
Exposure to ionizing radiation greatly increases the risk of developing papillary thyroid carcinoma (PTC), especially during childhood, mainly due to gradual inactivation of DNA repair genes and DNA damages. Recent molecular characterization of PTC revealed DNA methylation deregulation of several promoters of DNA repair genes. Thus, epigenetic silencing might be a plausible mechanism for the activity loss of tumor suppressor genes in radiation-induced thyroid tumors. Herein, we investigated the impact of ionizing radiation on global methylation and CpG islands within promoter regions of homologous recombination (HR) and non-homologous end joining (NHEJ) genes, as well as its effects on gene expression, using two well-established normal differentiated thyroid cell lines (FRTL5 and PCCL3)...
June 2, 2017: Radiation Research
https://www.readbyqxmd.com/read/28564601/replication-coupled-dilution-of-h4k20me2-guides-53bp1-to-pre-replicative-chromatin
#9
Stefania Pellegrino, Jone Michelena, Federico Teloni, Ralph Imhof, Matthias Altmeyer
The bivalent histone modification reader 53BP1 accumulates around DNA double-strand breaks (DSBs), where it dictates repair pathway choice decisions by limiting DNA end resection. How this function is regulated locally and across the cell cycle to channel repair reactions toward non-homologous end joining (NHEJ) in G1 and promote homology-directed repair (HDR) in S/G2 is insufficiently understood. Here, we show that the ability of 53BP1 to accumulate around DSBs declines as cells progress through S phase and reveal that the inverse relationship between 53BP1 recruitment and replicated chromatin is linked to the replication-coupled dilution of 53BP1's target mark H4K20me2...
May 30, 2017: Cell Reports
https://www.readbyqxmd.com/read/28560323/ctcf-facilitates-dna-double-strand-break-repair-by-enhancing-homologous-recombination-repair
#10
Khalid Hilmi, Maïka Jangal, Maud Marques, Tiejun Zhao, Amine Saad, Chenxi Zhang, Vincent M Luo, Alasdair Syme, Carlis Rejon, Zhenbao Yu, Asiev Krum, Marc R Fabian, Stéphane Richard, Moulay Alaoui-Jamali, Alexander Orthwein, Luke McCaffrey, Michael Witcher
The repair of DNA double-strand breaks (DSBs) is mediated via two major pathways, nonhomologous end joining (NHEJ) and homologous recombination (HR) repair. DSB repair is vital for cell survival, genome stability, and tumor suppression. In contrast to NHEJ, HR relies on extensive homology and templated DNA synthesis to restore the sequence surrounding the break site. We report a new role for the multifunctional protein CCCTC-binding factor (CTCF) in facilitating HR-mediated DSB repair. CTCF is recruited to DSB through its zinc finger domain independently of poly(ADP-ribose) polymers, known as PARylation, catalyzed by poly(ADP-ribose) polymerase 1 (PARP-1)...
May 2017: Science Advances
https://www.readbyqxmd.com/read/28552682/quantitative-proteomic-analysis-revealed-changes-in-protein-synthesis-and-mitochondrial-functions-after-acute-dna-damage-in-mouse-neural-stem-cells
#11
Xianli Wang, Chenxi Sun, Liang Zhu, Lixin Sun, Rongjie Ma, Zhigang Wang, Bing Lu, Xu Chen, Jun Xu
Considering the accumulation of DNA damages are frequently associated with neurodevelopmental disease, neurodegeneration, and brain tumors, exploration of the molecular mechanisms in mouse neural stem cells (NSCs) after DNA damage would be paramount useful for understanding the pathogenesis of these diseases. In present study, we utilized hydroxyurea (HU) treatment to cultured mouse NSCs to induce acute DNA damages. After HU treatment, mouse NSCs displayed elevated reactive oxygen species (ROS) level and compromised DNA repair in HR and NHEJ pathways...
May 25, 2017: Neuroscience Letters
https://www.readbyqxmd.com/read/28550064/transient-silencing-of-dna-repair-genes-improves-targeted-gene-integration-in-the-filamentous-fungus-trichoderma-reesei
#12
Pak Yang Chum, Georg Schmidt, Markku Saloheimo, Christopher P Landowski
Trichoderma reesei is a filamentous fungus that is used world-wide to produce industrial enzymes. Industrial strains have traditionally been created though systematic strain improvement by mutagenesis and screening approaches. It is also desirable to specifically manipulate genes of the organism to further improve and modify the strain. Targeted integration in filamentous fungi is typically hampered by very low frequencies of homologous recombination. To address this limitation we have developed a simple transient method for silencing genes in T...
May 26, 2017: Applied and Environmental Microbiology
https://www.readbyqxmd.com/read/28544016/recent-advances-of-crispr-cas9-genome-editing-technologies-for-biological-and-biomedical-investigations
#13
Vijai Singh, Nisarg Gohil, Robert Ramírez-García, Darren Braddick, Christian Kuete Fofié
The Type II CRISPR-Cas9 system is a simple, efficient, and versatile tool for targeted genome editing in a wide range of organisms and cell types. It continues to gain more scientific interest and has established itself as an extremely powerful technology within our synthetic biology toolkit. It works upon a targeted site and generates a double strand breaks that become repaired by either the NHEJ or HDR pathway, modifying or permanently replacing the genomic target sequences of interest. These can include viral targets, single-mutation genetic diseases, and multiple-site corrections for wide scale disease states, offering the potential to manage and cure some of mankind's most persistent biomedical menaces...
May 24, 2017: Journal of Cellular Biochemistry
https://www.readbyqxmd.com/read/28541389/cell-cycle-dependent-control-of-homologous-recombination
#14
Xin Zhao, Chengwen Wei, Jingjing Li, Poyuan Xing, Jingyao Li, Sihao Zheng, Xuefeng Chen
DNA double-strand breaks (DSBs) are among the most deleterious type of DNA lesions threatening genome integrity. Homologous recombination (HR) and non-homologous end joining (NHEJ) are two major pathways to repair DSBs. HR requires a homologous template to direct DNA repair, and is generally recognized as a high-fidelity pathway. In contrast, NHEJ directly seals broken ends, but the repair product is often accompanied by sequence alterations. The choice of repair pathways is strictly controlled by the cell cycle...
May 25, 2017: Acta Biochimica et Biophysica Sinica
https://www.readbyqxmd.com/read/28526069/xlf-mediated-nhej-activity-in-hepatocellular-carcinoma-therapy-resistance
#15
Sitian Yang, Xiao Qi Wang
BACKGROUND: DNA repair pathways are used by cancer cells to overcome many standard anticancer treatments, causing therapy resistance. Here, we investigated the role of XRCC4-like factor (XLF), a core member of the non-homologous end joining (NHEJ) repair pathway, in chemoresistance in hepatocellular carcinoma (HCC). METHODS: qRT-PCR analysis and western blotting were performed to detect expression levels of genes and proteins related to NHEJ. NHEJ repair capacity was assessed in vitro (cell-free) and in vivo by monitoring the activity of the NHEJ pathway...
May 19, 2017: BMC Cancer
https://www.readbyqxmd.com/read/28515316/dna-damage-induced-degradation-of-exo1-limits-dna-end-resection-to-ensure-accurate-dna-repair
#16
Nozomi Tomimatsu, Bipasha Mukherjee, Janelle Louise Harris, Francesca Ludovica Boffo, Molly Hardebeck, Patrick Ryan Potts, Kum Kum Khanna, Sandeep Burma
End resection of DNA double-strand breaks (DSBs) to generate 3'-single-stranded DNA facilitates DSB repair via error-free homologous recombination (HR) while stymieing repair by the error-prone non-homologous end joining (NHEJ) pathway. Activation of DNA end resection involves phosphorylation of the 5' to 3' exonuclease EXO1 by the phosphoinositide 3-kinase-like kinases ATM and ATR, and by the cyclin-dependent kinases 1 and 2. After activation, EXO1 must also be restrained in order to prevent over-resection which is known to hamper optimal HR and trigger global genomic instability...
May 17, 2017: Journal of Biological Chemistry
https://www.readbyqxmd.com/read/28512351/non-homologous-dna-end-joining-and-alternative-pathways-to-double-strand-break-repair
#17
REVIEW
Howard H Y Chang, Nicholas R Pannunzio, Noritaka Adachi, Michael R Lieber
DNA double-strand breaks (DSBs) are the most dangerous type of DNA damage because they can result in the loss of large chromosomal regions. In all mammalian cells, DSBs that occur throughout the cell cycle are repaired predominantly by the non-homologous DNA end joining (NHEJ) pathway. Defects in NHEJ result in sensitivity to ionizing radiation and the ablation of lymphocytes. The NHEJ pathway utilizes proteins that recognize, resect, polymerize and ligate the DNA ends in a flexible manner. This flexibility permits NHEJ to function on a wide range of DNA-end configurations, with the resulting repaired DNA junctions often containing mutations...
May 17, 2017: Nature Reviews. Molecular Cell Biology
https://www.readbyqxmd.com/read/28499832/versatile-and-precise-gene-targeting-strategies-for-functional-studies-in-mammalian-cell-lines
#18
REVIEW
M Wassef, A Luscan, A Battistella, S Le Corre, H Li, M R Wallace, M Vidaud, R Margueron
The advent of programmable nucleases such as ZFNs, TALENs and CRISPR/Cas9 has brought the power of genetic manipulation to widely used model systems. In mammalian cells, nuclease-mediated DNA double strand break is mainly repaired through the error-prone non-homologous end-joining (NHEJ) repair pathway, eventually leading to accumulation of small deletions or insertions (indels) that can inactivate gene function. However, due to the variable size of the indels and the polyploid status of many cell lines (e...
May 10, 2017: Methods: a Companion to Methods in Enzymology
https://www.readbyqxmd.com/read/28498430/uva-induced-upregulation-of-progerin-suppresses-53bp1%C3%A2-mediated-nhej-dsb-repair-in-human-keratinocytes-via-progerin-lamin%C3%A2-a-complex-formation
#19
Xin Huang, Yun Pan, Di Cao, Sheng Fang, Kun Huang, Jin Chen, Aijun Chen
Ultraviolet (UV) radiation is the primary risk factor underlying photoaging and photocarcinogenesis. Mounting research has focused on the role of DNA damage response pathways in UV-induced double-strand break (DSB) repair. In the present study, we hypothesized that UVA-induced aberrant progerin upregulation may adversely affect p53-binding protein 1 (53BP1)-mediated non-homologous end joining (NHE) DSB repair in human keratinocytes. Basal cell carcinoma (BCC) tumors and matching normal skin tissue were sampled (n=200) to investigate whether human keratinocytes display dysregulated progerin expression as a function of advancing age and BCC status...
April 26, 2017: Oncology Reports
https://www.readbyqxmd.com/read/28451577/expression-levels-of-two-dna-repair-related-genes-under-8-gy-ionizing-radiation-and-100-mg-kg-melatonin-delivery-in-rat-peripheral-blood
#20
M Valizadeh, A Shirazi, P Izadi, J Tavakkoly Bazzaz, H Rezaeejam
BACKGROUND: After radiation therapy (RT), some health hazards including DNA damages may occur where melatonin can play a protective role due to free radical generation. On the other hand, serious accidental overexposures may occur during RT due to nuclear accidents which necessitate the need for study on exposure to high-dose radiations during treatments. OBJECTIVE: The aim of this study was to study the expression level of two genes in non-homologous end joining (NHEJ) pathways named Xrcc4 and Xrcc6 (Ku70) in order to examine the effect of melatonin on repair of DNA double-strand breaks (BSBs) caused by 8Gy ionizing radiation...
March 2017: Journal of Biomedical Physics & Engineering
keyword
keyword
119457
1
2
Fetch more papers »
Fetching more papers... Fetching...
Read by QxMD. Sign in or create an account to discover new knowledge that matter to you.
Remove bar
Read by QxMD icon Read
×

Search Tips

Use Boolean operators: AND/OR

diabetic AND foot
diabetes OR diabetic

Exclude a word using the 'minus' sign

Virchow -triad

Use Parentheses

water AND (cup OR glass)

Add an asterisk (*) at end of a word to include word stems

Neuro* will search for Neurology, Neuroscientist, Neurological, and so on

Use quotes to search for an exact phrase

"primary prevention of cancer"
(heart or cardiac or cardio*) AND arrest -"American Heart Association"