keyword
MENU ▼
Read by QxMD icon Read
search

NHEJ pathway

keyword
https://www.readbyqxmd.com/read/27926866/inflammation-induced-oxidative-stress-mediates-gene-fusion-formation-in-prostate-cancer
#1
Ram S Mani, Mohammad A Amin, Xiangyi Li, Shanker Kalyana-Sundaram, Brendan A Veeneman, Lei Wang, Aparna Ghosh, Adam Aslam, Susmita G Ramanand, Bradley J Rabquer, Wataru Kimura, Maxwell Tran, Xuhong Cao, Sameek Roychowdhury, Saravana M Dhanasekaran, Nallasivam Palanisamy, Hesham A Sadek, Payal Kapur, Alisa E Koch, Arul M Chinnaiyan
Approximately 50% of prostate cancers are associated with gene fusions of the androgen-regulated gene TMPRSS2 to the oncogenic erythroblast transformation-specific (ETS) transcription factor ERG. The three-dimensional proximity of TMPRSS2 and ERG genes, in combination with DNA breaks, facilitates the formation of TMPRSS2-ERG gene fusions. However, the origins of DNA breaks that underlie gene fusion formation in prostate cancers are far from clear. We demonstrate a role for inflammation-induced oxidative stress in the formation of DNA breaks leading to recurrent TMPRSS2-ERG gene fusions...
December 6, 2016: Cell Reports
https://www.readbyqxmd.com/read/27924007/bridging-of-double-stranded-breaks-by-the-nonhomologous-end-joining-ligation-complex-is-modulated-by-dna-end-chemistry
#2
Dylan A Reid, Michael P Conlin, Yandong Yin, Howard H Chang, Go Watanabe, Michael R Lieber, Dale A Ramsden, Eli Rothenberg
The nonhomologous end-joining (NHEJ) pathway is the primary repair pathway for DNA double strand breaks (DSBs) in humans. Repair is mediated by a core complex of NHEJ factors that includes a ligase (DNA Ligase IV; L4) that relies on juxtaposition of 3' hydroxyl and 5' phosphate termini of the strand breaks for catalysis. However, chromosome breaks arising from biological sources often have different end chemistries, and how these different end chemistries impact the way in which the core complex directs the necessary transitions from end pairing to ligation is not known...
December 6, 2016: Nucleic Acids Research
https://www.readbyqxmd.com/read/27924002/sfpq%C3%A2-nono-and-xlf-function-separately-and-together-to-promote-dna-double-strand-break-repair-via-canonical-nonhomologous-end-joining
#3
Lahcen Jaafar, Zhentian Li, Shuyi Li, William S Dynan
A complex of two related mammalian proteins, SFPQ and NONO, promotes DNA double-strand break repair via the canonical nonhomologous end joining (c-NHEJ) pathway. However, its mechanism of action is not fully understood. Here we describe an improved SFPQ•NONO-dependent in vitro end joining assay. We use this system to demonstrate that the SFPQ•NONO complex substitutes in vitro for the core c-NHEJ factor, XLF. Results are consistent with a model where SFPQ•NONO promotes sequence-independent pairing of DNA substrates, albeit in a way that differs in detail from XLF...
December 6, 2016: Nucleic Acids Research
https://www.readbyqxmd.com/read/27922005/wrn-regulates-pathway-choice-between-classical-and-alternative-non-homologous-end-joining
#4
Raghavendra A Shamanna, Huiming Lu, Jessica K de Freitas, Jane Tian, Deborah L Croteau, Vilhelm A Bohr
Werner syndrome (WS) is an accelerated ageing disorder with genomic instability caused by WRN protein deficiency. Many features seen in WS can be explained by the diverse functions of WRN in DNA metabolism. However, the origin of the large genomic deletions and telomere fusions are not yet understood. Here, we report that WRN regulates the pathway choice between classical (c)- and alternative (alt)-nonhomologous end joining (NHEJ) during DNA double-strand break (DSB) repair. It promotes c-NHEJ via helicase and exonuclease activities and inhibits alt-NHEJ using non-enzymatic functions...
December 6, 2016: Nature Communications
https://www.readbyqxmd.com/read/27921283/choices-have-consequences-the-nexus-between-dna-repair-pathways-and-genomic-instability-in-cancer
#5
REVIEW
Sonali Bhattacharjee, Saikat Nandi
BACKGROUND: The genome is under constant assault from a multitude of sources that can lead to the formation of DNA double-stand breaks (DSBs). DSBs are cytotoxic lesions, which if left unrepaired could lead to genomic instability, cancer and even cell death. However, erroneous repair of DSBs can lead to chromosomal rearrangements and loss of heterozygosity, which in turn can also cause cancer and cell death. Hence, although the repair of DSBs is crucial for the maintenance of genome integrity the process of repair need to be well regulated and closely monitored...
December 2016: Clinical and Translational Medicine
https://www.readbyqxmd.com/read/27915381/regulation-of-non-homologous-end-joining-via-post-translational-modifications-of-components-of-the-ligation-step
#6
REVIEW
Kristína Durdíková, Miroslav Chovanec
DNA double-strand breaks are the most serious type of DNA damage and non-homologous end joining (NHEJ) is an important pathway for their repair. In Saccharomyces cerevisiae, three complexes mediate the canonical NHEJ pathway, Ku (Ku70/Ku80), MRX (Mre11/Rad50/Xrs2) and DNA ligase IV (Dnl4/Lif1). Mammalian NHEJ is more complex, primarily as a consequence of the fact that more factors are involved in the process, and also because higher chromatin organization and more complex regulatory networks exist in mammals...
December 3, 2016: Current Genetics
https://www.readbyqxmd.com/read/27914769/clinicopathological-and-molecular-characteristics-of-ku-70-80-expression-in-nigerian-breast-cancer-and-its-potential-therapeutic-implications
#7
Ayodeji O J Agboola, Henry O Ebili, Victoria O Iyawe, Adekunbiola A F Banjo, Babatunde A Salami, Emad A Rakha, Chrstopher C Nolan, Ian O Ellis, Andrew R Green
Ku 70/80 is a regulator of the Non-Homologous End Joining (NHEJ) roles in clinicopathological features, and has prognostic significance in breast cancer (BC) in Caucasian populations. However, its significance in the Nigerian BC population, which is characterized by a higher rate of the triple-negative and basal phenotype, p53 mutation rate and BRCA1 deficiency, still needs to be investigated. We hypothesize that Ku70/80 expression shows adverse expression in Nigerian BC and, furthermore, that it is likely to have a therapeutic implication for Black BC management...
October 25, 2016: Pathology, Research and Practice
https://www.readbyqxmd.com/read/27875301/an-intrinsically-disordered-aplf-links-ku-dna-pkcs-and-xrcc4-dna-ligase-iv-in-an-extended-flexible-non-homologous-end-joining-complex
#8
Michal Hammel, Yaping Yu, Sarvan Kumar Radhakrishnan, Chirayu Chokshi, Miaw-Sheue Tsai, Yoshihiro Matsumoto, Monica Kuzdovich, Soumya G Remesh, Shujuan Fang, Alan E Tomkinson, Susan P Lees-Miller, John A Tainer
DNA double-strand break (DSB) repair by non-homologous end joining (NHEJ) in human cells is initiated by Ku heterodimer binding to a DSB, followed by recruitment of core NHEJ factors including DNA-dependent protein kinase catalytic subunit (DNA-PKcs), XRCC4-like factor (XLF) and XRCC4 (X4)-DNA ligase IV (L4). In addition, Ku interacts with accessory factors such as Aprataxin and Polynucleotide kinase/phosphatase-Like Factor (APLF), yet how these factors interact to tether, process and ligate DSB ends while allowing regulation and chromatin interactions remains enigmatic...
November 14, 2016: Journal of Biological Chemistry
https://www.readbyqxmd.com/read/27869163/wwox-brca1-interaction-role-in-dna-repair-pathway-choice
#9
M S Schrock, B Batar, J Lee, T Druck, B Ferguson, J H Cho, K Akakpo, H Hagrass, N A Heerema, F Xia, J D Parvin, C M Aldaz, K Huebner
In this study, loss of expression of the fragile site-encoded Wwox protein was found to contribute to radiation and cisplatin resistance of cells, responses that could be associated with cancer recurrence and poor outcome. WWOX gene deletions occur in a variety of human cancer types, and reduced Wwox protein expression can be detected early during cancer development. We found that Wwox loss is followed by mild chromosome instability in genomes of mouse embryo fibroblast cells from Wwox-knockout mice. Human and mouse cells deficient for Wwox also exhibit significantly enhanced survival of ionizing radiation and bleomycin treatment, agents that induce double-strand breaks (DSBs)...
November 21, 2016: Oncogene
https://www.readbyqxmd.com/read/27869160/pot1-ob-fold-mutations-unleash-telomere-instability-to-initiate-tumorigenesis
#10
P Gu, Y Wang, K K Bisht, L Wu, L Kukova, E M Smith, Y Xiao, S M Bailey, M Lei, J Nandakumar, S Chang
Chromosomal aberrations are a hallmark of human cancers, with complex cytogenetic rearrangements leading to genetic changes permissive for cancer initiation and progression. Protection of Telomere 1 (POT1) is an essential component of the shelterin complex and functions to maintain chromosome stability by repressing the activation of aberrant DNA damage and repair responses at telomeres. Sporadic and familial mutations in the oligosaccharide-oligonucleotide (OB) folds of POT1 have been identified in many human cancers, but the mechanism underlying how hPOT1 mutations initiate tumorigenesis has remained unclear...
November 21, 2016: Oncogene
https://www.readbyqxmd.com/read/27866150/crispr-cas9-induced-double-strand-break-repair-in-arabidopsis-non-homologous-end-joining-mutants
#11
Hexi Shen, Gary D Strunks, Bart J P M Klemann, Paul J J Hooykaas, Sylvia de Pater
Double-strand breaks (DSBs) are one of the most harmful DNA lesions. Cells utilize two main pathways for DSB repair: homologous recombination (HR) and non-homologous end-joining (NHEJ). NHEJ can be subdivided into the KU-dependent classical NHEJ (c-NHEJ) and the more error-prone KU-independent backup-NHEJ (b-NHEJ) pathways, involving the poly (ADP-ribose) polymerases (PARPs). However, in absence of these factors, cells still seem able to adequately maintain genome integrity, suggesting the presence of other b-NHEJ repair factors or pathways independent from KU and PARPs...
November 18, 2016: G3: Genes—Genomes—Genetics
https://www.readbyqxmd.com/read/27849008/ku70-serine-155-mediates-aurora-b-inhibition-and-activation-of-the-dna-damage-response
#12
Victoria L Fell, Elizabeth A Walden, Sarah M Hoffer, Stephanie R Rogers, Amelia S Aitken, Louisa M Salemi, Caroline Schild-Poulter
The Ku heterodimer (Ku70/Ku80) is the central DNA binding component of the classical non-homologous end joining (NHEJ) pathway that repairs DNA double-stranded breaks (DSBs), serving as the scaffold for the formation of the NHEJ complex. Here we show that Ku70 is phosphorylated on Serine 155 in response to DNA damage. Expression of Ku70 bearing a S155 phosphomimetic substitution (Ku70 S155D) in Ku70-deficient mouse embryonic fibroblasts (MEFs) triggered cell cycle arrest at multiple checkpoints and altered expression of several cell cycle regulators in absence of DNA damage...
November 16, 2016: Scientific Reports
https://www.readbyqxmd.com/read/27836667/exploring-the-potential-of-genome-editing-crispr-cas9-technology
#13
REVIEW
Vijai Singh, Darren Braddick, Pawan Kumar Dhar
CRISPR-Cas9 is an RNA-mediated adaptive immune system that protects bacteria and archaea from viruses or plasmids. Herein we discuss the recent development of CRISPR-Cas9 into a key technology for genome editing, targeting, and regulation in a wide range of organisms and cell types. It requires a custom designed single guide-RNA (sgRNA), a Cas9 endonuclease, and PAM sequences in the target region. The sgRNA-Cas9 complex binds to its target and creates a double-strand break (DSB) that can be repaired by non-homologous end joining (NHEJ) or by the homology-directed repair (HDR) pathway, modifying or permanently replacing the genomic target sequence...
November 9, 2016: Gene
https://www.readbyqxmd.com/read/27830975/deficiency-of-xlf-and-paxx-prevents-dna-double-strand-break-repair-by-non-homologous-end-joining-in-lymphocytes
#14
Putzer J Hung, Bo-Ruei Chen, Rosmy George, Caleb Liberman, Abigail J Morales, Pedro Colon-Ortiz, Jessica K Tyler, Barry P Sleckman, Andrea L Bredemeyer
Non-homologous end joining (NHEJ) is a major DNA double-strand break (DSB) repair pathway that functions in all phases of the cell cycle. NHEJ repairs genotoxic and physiological DSBs, such as those generated by ionizing radiation and during V(D)J recombination at antigen receptor loci, respectively. DNA end joining by NHEJ relies on the core factors Ku70, Ku80, XRCC4, and DNA Ligase IV. Additional proteins also play important roles in NHEJ. The XRCC4-like factor (XLF) participates in NHEJ through its interaction with XRCC4, and XLF deficiency in humans leads to immunodeficiency and increased sensitivity to ionizing radiation...
November 10, 2016: Cell Cycle
https://www.readbyqxmd.com/read/27820601/scai-promotes-dna-double-strand-break-repair-in-distinct-chromosomal-contexts
#15
Rebecca Kring Hansen, Andreas Mund, Sara Lund Poulsen, Maria Sandoval, Karolin Klement, Katerina Tsouroula, Maxim A X Tollenaere, Markus Räschle, Rebeca Soria, Stefan Offermanns, Thomas Worzfeld, Robert Grosse, Dominique T Brandt, Björn Rozell, Matthias Mann, Francesca Cole, Evi Soutoglou, Aaron A Goodarzi, Jeremy A Daniel, Niels Mailand, Simon Bekker-Jensen
DNA double-strand breaks (DSBs) are highly cytotoxic DNA lesions, whose accurate repair by non-homologous end-joining (NHEJ) or homologous recombination (HR) is crucial for genome integrity and is strongly influenced by the local chromatin environment. Here, we identify SCAI (suppressor of cancer cell invasion) as a 53BP1-interacting chromatin-associated protein that promotes the functionality of several DSB repair pathways in mammalian cells. SCAI undergoes prominent enrichment at DSB sites through dual mechanisms involving 53BP1-dependent recruitment to DSB-surrounding chromatin and 53BP1-independent accumulation at resected DSBs...
November 7, 2016: Nature Cell Biology
https://www.readbyqxmd.com/read/27806302/telomere-internal-double-strand-breaks-are-repaired-by-homologous-recombination-and-parp1-lig3-dependent-end-joining
#16
Ylli Doksani, Titia de Lange
Shelterin protects chromosome ends from the DNA damage response. Although the mechanism of telomere protection has been studied extensively, the fate of double-strand breaks (DSBs) inside telomeres is not known. Here, we report that telomere-internal FokI-induced DSBs activate ATM kinase-dependent signaling in S-phase but are well tolerated and repaired efficiently. Homologous recombination contributes to repair, leading to increased telomere length heterogeneity typical of the alternative lengthening of telomeres (ALT) pathway...
November 1, 2016: Cell Reports
https://www.readbyqxmd.com/read/27803664/herpes-simplex-virus-type1-hsv-1-impairs-dna-repair-in-cortical-neurons
#17
Giovanna De Chiara, Mauro Racaniello, Cristiana Mollinari, Maria Elena Marcocci, Giorgia Aversa, Alessio Cardinale, Anna Giovanetti, Enrico Garaci, Anna Teresa Palamara, Daniela Merlo
Several findings suggest that Herpes simplex virus-1 (HSV-1) infection plays a role in the neurodegenerative processes that characterize Alzheimer's disease (AD), but the underlying mechanisms have yet to be fully elucidated. Here we show that HSV-1 productive infection in cortical neurons causes the accumulation of DNA lesions that include both single (SSBs) and double strand breaks (DSBs), which are reported to be implicated in the neuronal loss observed in neurodegenerative diseases. We demonstrate that HSV-1 downregulates the expression level of Ku80, one of the main components of non-homologous end joining (NHEJ), a major pathway for the repair of DSBs...
2016: Frontiers in Aging Neuroscience
https://www.readbyqxmd.com/read/27776457/homologous-recombination-preferentially-repairs-heat-induced-dna-double-strand-breaks-in-mammalian-cells
#18
Akihisa Takahashi, Eiichiro Mori, Yosuke Nakagawa, Atsuhisa Kajihara, Tadaaki Kirita, L Pittman Douglas, Masatoshi Hasegawa, Takeo Ohnishi
PURPOSE: Heat shock induces DNA double-strand breaks (DSBs), but the precise mechanism of repairing heat-induced damage is unclear. Here, we investigated the DNA repair pathways involved in cell death induced by heat shock. MATERIALS AND METHODS: B02, a specific inhibitor of human RAD51 (homologous recombination; HR), and NU7026, a specific inhibitor of DNA-PK (non-homologous end-joining; NHEJ), were used for survival assays of human cancer cell lines with different p53-gene status...
October 24, 2016: International Journal of Hyperthermia
https://www.readbyqxmd.com/read/27741411/nuclear-pten-interferes-with-binding-of-ku70-at-double-strand-breaks-through-post-translational-poly-adp-ribosyl-ation
#19
Jiawei Guan, Qian Zhao, Weifeng Mao
PTEN is a tumor suppressor gene characterized as a phosphatase that antagonizes the phosphatidylinositol 3-kinase signaling pathway in the cytoplasm. Nuclear PTEN plays roles in chromosomal stability, in which the double-strand breaks (DSB) repair mediated by homologous recombination (HR) and non-homologous end joining (NHEJ) is critical. Herein, the role of nuclear PTEN in DSB repair and the underlying molecular mechanism was investigated in this study. Using human breast cancer BT549 and MDA-MB-231 cell lines, we reveal a specific feature of PTEN that controls poly(ADP-ribosyl)ation of Ku70 and interferes with binding of Ku70 at DSB...
December 2016: Biochimica et Biophysica Acta
https://www.readbyqxmd.com/read/27738139/the-multifaceted-influence-of-histone-deacetylases-on-dna-damage-signalling-and-dna-repair
#20
Wynand Paul Roos, Andrea Krumm
Histone/protein deacetylases play multiple roles in regulating gene expression and protein activation and stability. Their deregulation during cancer initiation and progression cause resistance to therapy. Here, we review the role of histone deacetylases (HDACs) and the NAD(+) dependent sirtuins (SIRTs) in the DNA damage response (DDR). These lysine deacetylases contribute to DNA repair by base excision repair (BER), nucleotide excision repair (NER), mismatch repair (MMR), non-homologous end joining (NHEJ), homologous recombination (HR) and interstrand crosslink (ICL) repair...
December 1, 2016: Nucleic Acids Research
keyword
keyword
119457
1
2
Fetch more papers »
Fetching more papers... Fetching...
Read by QxMD. Sign in or create an account to discover new knowledge that matter to you.
Remove bar
Read by QxMD icon Read
×

Search Tips

Use Boolean operators: AND/OR

diabetic AND foot
diabetes OR diabetic

Exclude a word using the 'minus' sign

Virchow -triad

Use Parentheses

water AND (cup OR glass)

Add an asterisk (*) at end of a word to include word stems

Neuro* will search for Neurology, Neuroscientist, Neurological, and so on

Use quotes to search for an exact phrase

"primary prevention of cancer"
(heart or cardiac or cardio*) AND arrest -"American Heart Association"