Read by QxMD icon Read

bianxiao cui

Hsin-Ya Lou, Wenting Zhao, Lindsey Hanson, Connie Zeng, Yi Cui, Bianxiao Cui
Clinical studies of circulating tumor cells (CTC) have stringent demands for high capture purity and high capture efficiency. Nanostructured surfaces have been shown to significantly increase the capture efficiency yet suffer from low capture purity. Here we introduce a dual-functional lipid coating on nanostructured surfaces. The lipid coating serves both as an effective passivation layer that helps prevent nonspecific cell adhesion and as a functionalized layer for antibody-based specific cell capture. In addition, the fluidity of lipid bilayers enables antibody clustering that enhances the cell-surface interaction for efficient cell capture...
January 18, 2017: Langmuir: the ACS Journal of Surfaces and Colloids
Jason Horng, Halleh B Balch, Allister F McGuire, Hsin-Zon Tsai, Patrick R Forrester, Michael F Crommie, Bianxiao Cui, Feng Wang
The use of electric fields for signalling and control in liquids is widespread, spanning bioelectric activity in cells to electrical manipulation of microstructures in lab-on-a-chip devices. However, an appropriate tool to resolve the spatio-temporal distribution of electric fields over a large dynamic range has yet to be developed. Here we present a label-free method to image local electric fields in real time and under ambient conditions. Our technique combines the unique gate-variable optical transitions of graphene with a critically coupled planar waveguide platform that enables highly sensitive detection of local electric fields with a voltage sensitivity of a few microvolts, a spatial resolution of tens of micrometres and a frequency response over tens of kilohertz...
December 16, 2016: Nature Communications
Jie-Min Jia, Praveen D Chowdary, Xiaofei Gao, Bo Ci, Wenjun Li, Aditi Mulgaonkar, Erik J Plautz, Gedaa Hassan, Amit Kumar, Ann M Stowe, Shao-Hua Yang, Wei Zhou, Xiankai Sun, Bianxiao Cui, Woo-Ping Ge
The precise manipulation of microcirculation in mice can facilitate mechanistic studies of brain injury and repair after ischemia, but this manipulation remains a technical challenge, particularly in conscious mice. We developed a technology that uses micromagnets to induce aggregation of magnetic nanoparticles to reversibly occlude blood flow in microvessels. This allowed induction of ischemia in a specific cortical region of conscious mice of any postnatal age, including perinatal and neonatal stages, with precise spatiotemporal control but without surgical intervention of the skull or artery...
February 2017: Nature Methods
Qunxiang Ong, Shunling Guo, Liting Duan, Kai Zhang, Eleanor Ann Collier, Bianxiao Cui
Acute brain injuries such as ischemic stroke or traumatic brain injury often cause massive neural death and irreversible brain damage with grave consequences. Previous studies have established that a key participant in the events leading to neural death is the excessive production of reactive oxygen species. Protecting neuronal cells by activating their endogenous defense mechanisms is an attractive treatment strategy for acute brain injuries. In this work, we investigate how the precise timing of the Raf/ERK and the AKT pathway activation affects their protective effects against oxidative stress...
2016: PloS One
Praveen D Chowdary, Daphne L Che, Luke Kaplan, Ou Chen, Kanyi Pu, Moungi Bawendi, Bianxiao Cui
Dynein-dependent transport of organelles from the axon terminals to the cell bodies is essential to the survival and function of neurons. However, quantitative knowledge of dyneins on axonal organelles and their collective function during this long-distance transport is lacking because current technologies to do such measurements are not applicable to neurons. Here, we report a new method termed nanoparticle-assisted optical tethering of endosomes (NOTE) that made it possible to study the cooperative mechanics of dyneins on retrograde axonal endosomes in live neurons...
December 10, 2015: Scientific Reports
Daphne L Che, Praveen D Chowdary, Bianxiao Cui
The bidirectional transport of cargos along the thin axon is fundamental for the structure, function and survival of neurons. Defective axonal transport has been linked to the mechanism of neurodegenerative diseases. In this paper, we study the effect of the local axonal environment to cargo transport behavior in neurons. Using dual-color fluorescence imaging in microfluidic neuronal devices, we quantify the transport dynamics of cargos when crossing stationary organelles such as non-moving endosomes and stationary mitochondria in the axon...
January 1, 2016: Neuroscience Letters
Benjamin C-K Tee, Alex Chortos, Andre Berndt, Amanda Kim Nguyen, Ariane Tom, Allister McGuire, Ziliang Carter Lin, Kevin Tien, Won-Gyu Bae, Huiliang Wang, Ping Mei, Ho-Hsiu Chou, Bianxiao Cui, Karl Deisseroth, Tse Nga Ng, Zhenan Bao
Human skin relies on cutaneous receptors that output digital signals for tactile sensing in which the intensity of stimulation is converted to a series of voltage pulses. We present a power-efficient skin-inspired mechanoreceptor with a flexible organic transistor circuit that transduces pressure into digital frequency signals directly. The output frequency ranges between 0 and 200 hertz, with a sublinear response to increasing force stimuli that mimics slow-adapting skin mechanoreceptors. The output of the sensors was further used to stimulate optogenetically engineered mouse somatosensory neurons of mouse cortex in vitro, achieving stimulated pulses in accordance with pressure levels...
October 16, 2015: Science
Yu-Hui Wong, Chia-Ming Lee, Wenjun Xie, Bianxiao Cui, Mu-ming Poo
Brain-derived neurotrophic factor (BDNF) is known to modulate synapse development and plasticity, but the source of synaptic BDNF and molecular mechanisms regulating BDNF release remain unclear. Using exogenous BDNF tagged with quantum dots (BDNF-QDs), we found that endocytosed BDNF-QDs were preferentially localized to postsynaptic sites in the dendrite of cultured hippocampal neurons. Repetitive neuronal spiking induced the release of BDNF-QDs at these sites, and this process required activation of glutamate receptors...
August 11, 2015: Proceedings of the National Academy of Sciences of the United States of America
Praveen D Chowdary, Daphne L Che, Kai Zhang, Bianxiao Cui
We present a detailed motion analysis of retrograde nerve growth factor (NGF) endosomes in axons to show that mechanical tugs-of-war and intracellular motor regulation are complimentary features of the near-unidirectional endosome directionality. We used quantum dots to fluorescently label NGF and acquired trajectories of retrograde quantum-dot-NGF-endosomes with <20-nm accuracy at 32 Hz in microfluidic neuron cultures. Using a combination of transient motion analysis and Bayesian parsing, we partitioned the trajectories into sustained periods of retrograde (dynein-driven) motion, constrained pauses, and brief anterograde (kinesin-driven) reversals...
June 2, 2015: Biophysical Journal
Daphne L Che, Liting Duan, Kai Zhang, Bianxiao Cui
The photoreceptor cryptochrome 2 (CRY2) has become a powerful optogenetic tool that allows light-inducible manipulation of various signaling pathways and cellular processes in mammalian cells with high spatiotemporal precision and ease of application. However, it has also been shown that the behavior of CRY2 under blue light is complex, as the photoexcited CRY2 can both undergo homo-oligomerization and heterodimerization by binding to its dimerization partner CIB1. To better understand the light-induced CRY2 activities in mammalian cells, this article systematically characterizes CRY2 homo-oligomerization in different cellular compartments, as well as how CRY2 homo-oligomerization and heterodimerization activities affect each other...
October 16, 2015: ACS Synthetic Biology
Lindsey Hanson, Wenting Zhao, Hsin-Ya Lou, Ziliang Carter Lin, Seok Woo Lee, Praveen Chowdary, Yi Cui, Bianxiao Cui
The mechanical stability and deformability of the cell nucleus are crucial to many biological processes, including migration, proliferation and polarization. In vivo, the cell nucleus is frequently subjected to deformation on a variety of length and time scales, but current techniques for studying nuclear mechanics do not provide access to subnuclear deformation in live functioning cells. Here we introduce arrays of vertical nanopillars as a new method for the in situ study of nuclear deformability and the mechanical coupling between the cell membrane and the nucleus in live cells...
June 2015: Nature Nanotechnology
Olga Volotskova, Conroy Sun, Jason H Stafford, Ai Leen Koh, Xiaowei Ma, Zhen Cheng, Bianxiao Cui, Guillem Pratx, Lei Xing
Beta-emitting isotopes Fluorine-18 and Yttrium-90 are tested for their potential to stimulate gold nanoclusters conjugated with blood serum proteins (AuNCs). AuNCs excited by either medical radioisotope are found to be highly effective ionizing radiation energy transfer mediators, suitable for in vivo optical imaging. AuNCs synthesized with protein templates convert beta-decaying radioisotope energy into tissue-penetrating optical signals between 620 and 800 nm. Optical signals are not detected from AuNCs incubated with Technetium-99m, a pure gamma emitter that is used as a control...
August 26, 2015: Small
Liting Duan, Daphne Che, Kai Zhang, Qunxiang Ong, Shunling Guo, Bianxiao Cui
Intracellular transport and distribution of organelles play important roles in diverse cellular functions, including cell polarization, intracellular signaling, cell survival, and apoptosis. Here, we report an optogenetic strategy to control the transport and distribution of organelles by light. This is achieved by optically recruiting molecular motors onto organelles through the heterodimerization of Arabidopsis thaliana cryptochrome 2 (CRY2) and its interacting partner CIB1. CRY2 and CIB1 dimerize within subseconds upon exposure to blue light, which requires no exogenous ligands and low intensity of light...
May 21, 2015: Chemistry & Biology
Matthew R Angle, Bianxiao Cui, Nicholas A Melosh
Neuroscience would be revolutionized by a technique to measure intracellular electrical potentials that would not disrupt cellular physiology and could be massively parallelized. Though such a technology does not yet exist, the technical hurdles for fabricating minimally disruptive, solid-state electrical probes have arguably been overcome in the field of nanotechnology. Nanoscale devices can be patterned with features on the same length scale as biological components, and several groups have demonstrated that nanoscale electrical probes can measure the transmembrane potential of electrogenic cells...
June 2015: Current Opinion in Neurobiology
Kai Zhang, Praveen D Chowdary, Bianxiao Cui
Rab7 GTPase is known to regulate protein degradation and intracellular signaling via endocytic sorting and is also known to be involved in peripheral neurodegeneration. Mutations in the GTP-binding pocket of Rab7 cause Charcot-Marie-Tooth type 2B (CMT-2B) neuropathy. It has been suggested that the CMT-2B-associated Rab7 mutants may disrupt retrograde survival signaling by degrading the signaling endosomes carrying the nerve growth factor (NGF) and its TrkA receptor. Studying the cotrafficking of Rab7 and retrograde-TrkA endosomes in axons is therefore important to understand how Rab7 mutants affect the NGF signaling in neurons...
2015: Methods in Molecular Biology
Qunxiang Ong, Shunling Guo, Kai Zhang, Bianxiao Cui
U0126 is a potent and selective inhibitor of MEK1 and MEK2 kinases. It has been widely used as an inhibitor for the Ras/Raf/MEK/ERK signaling pathway with over 5000 references on the NCBI PubMed database. In particular, U0126 has been used in a number of studies to show that inhibition of the Raf/MEK/ERK pathway protects neuronal cells against oxidative stress. Here, we report that U0126 can function as an antioxidant that protects PC12 cells against a number of different oxidative-stress inducers. This protective effect of U0126 is independent of its function as a MEK inhibitor, as several other MEK inhibitors failed to show similar protective effects...
January 21, 2015: ACS Chemical Neuroscience
Kai Zhang, Bianxiao Cui
Cells employ a plethora of signaling pathways to make their life-and-death decisions. Extensive genetic, biochemical, and physiological studies have led to the accumulation of knowledge about signaling components and their interactions within signaling networks. These conventional approaches, although useful, lack the ability to control the spatial and temporal aspects of signaling processes. The recently emerged optogenetic tools open exciting opportunities by enabling signaling regulation with superior temporal and spatial resolution, easy delivery, rapid reversibility, fewer off-target side effects, and the ability to dissect complex signaling networks...
February 2015: Trends in Biotechnology
Xing Xie, Wenting Zhao, Hye Ryoung Lee, Chong Liu, Meng Ye, Wenjun Xie, Bianxiao Cui, Craig S Criddle, Yi Cui
Biological cells often interact with their local environment through subcellular structures at a scale of tens to hundreds of nanometers. This study investigated whether topographic features fabricated at a similar scale would impact cellular functions by promoting the interaction between subcellular structures and nanomaterials. Crinkling of carbon nanotube films by solvent-induced swelling and shrinkage of substrate resulted in the formation of ridge features at the subcellular scale on both flat and three-dimensional substrates...
December 23, 2014: ACS Nano
Binhua Lin, Bianxiao Cui, Xinliang Xu, Ronen Zangi, Haim Diamant, Stuart A Rice
We report the results of experimental studies of the short-time-long-wavelength behavior of collective particle displacements in quasi-one-dimensional (q1D) and quasi-two-dimensional (q2D) colloid suspensions. Our results are reported via the q → 0 behavior of the hydrodynamic function H(q) that relates the effective collective diffusion coefficient D(e)(q), with the static structure factor S(q) and the self-diffusion coefficient of isolated particles D(0): H(q) ≡ D(e)(q)S(q)/D(0). We find an apparent divergence of H(q) as q → 0 with the form H(q) ∝ q(-γ) (1...
February 2014: Physical Review. E, Statistical, Nonlinear, and Soft Matter Physics
Kai Zhang, Bianxiao Cui
In this issue of Chemistry & Biology, Kim and colleagues describe their work on optogenetic control of fibroblast growth factor receptor (FGFR) signaling. By engineering a chimeric receptor, the authors demonstrate that FGFR intracellular signaling can be controlled in space and time by blue light.
July 17, 2014: Chemistry & Biology
Fetch more papers »
Fetching more papers... Fetching...
Read by QxMD. Sign in or create an account to discover new knowledge that matter to you.
Remove bar
Read by QxMD icon Read

Search Tips

Use Boolean operators: AND/OR

diabetic AND foot
diabetes OR diabetic

Exclude a word using the 'minus' sign

Virchow -triad

Use Parentheses

water AND (cup OR glass)

Add an asterisk (*) at end of a word to include word stems

Neuro* will search for Neurology, Neuroscientist, Neurological, and so on

Use quotes to search for an exact phrase

"primary prevention of cancer"
(heart or cardiac or cardio*) AND arrest -"American Heart Association"