Read by QxMD icon Read

Drosophila midgut

Patrick Aghajanian, Shigeo Takashima, Manash Paul, Amelia Younossi-Hartenstein, Volker Hartenstein
The visceral musculature of the Drosophila intestine plays important roles in digestion as well as development. Detailed studies investigating the embryonic development of the visceral muscle exist; comparatively little is known about postembryonic development and metamorphosis of this tissue. In this study we have combined the use of specific markers with electron microscopy to follow the formation of the adult visceral musculature and its involvement in gut development during metamorphosis. Unlike the adult somatic musculature, which is derived from a pool of undifferentiated myoblasts, the visceral musculature of the adult is a direct descendant of the larval fibers, as shown by activating a lineage tracing construct in the larval muscle and obtaining labeled visceral fibers in the adult...
October 17, 2016: Developmental Biology
Sanae Sekihara, Toshio Shibata, Mai Hyakkendani, Shun-Ichiro Kawabata
We recently reported that transglutaminase (TG) suppresses immune deficiency pathway-controlled antimicrobial peptides (IMD-AMPs), thereby conferring immune tolerance to gut microbes, and that RNAi of the TG gene in flies decreases the lifespan compared with non-TG-RNAi flies. Here, analysis of the bacterial composition of the Drosophila gut by next-generation sequencing revealed that gut microbiota comprising one dominant genus of Acetobacter in non-TG-RNAi flies was shifted to that comprising two dominant genera of Acetobacter and Providencia in TG-RNAi flies...
October 19, 2016: Journal of Biological Chemistry
Rui Pang, Meng Chen, Zhikun Liang, Xiangzhao Yue, Hu Ge, Wenqing Zhang
The cytochrome P450 CYP6ER1 has been reported to play an important role in imidacloprid resistance of the brown planthopper (BPH), Nilaparvata lugens, and is overexpressed in most resistant populations. In the present study, we confirmed that CYP6ER1 expression can be induced by certain levels of imidacloprid. Developmental expression analysis revealed that CYP6ER1 was expressed highly in the adult stage, and tissue distribution analysis showed that CYP6ER1 was expressed mainly in the fat body and midgut. RNA interference (RNAi) of CYP6ER1 and transgenic expression of CYP6ER1 in Drosophila melanogaster both suggested that the expression of CYP6ER1 is sufficient to confer imidacloprid resistance...
October 10, 2016: Scientific Reports
Olha M Strilbytska, Uliana V Semaniuk, Kenneth B Storey, Bruce A Edgar, Oleh V Lushchak
The TOR (target of rapamycin) signaling pathway and the transcriptional factor Myc play important roles in growth control. Myc acts, in part, as a downstream target of TOR to regulate the activity and functioning of stem cells. Here we explore the role of TOR-Myc axis in stem and progenitor cells in the regulation of lifespan, stress resistance and metabolism in Drosophila. We found that both overexpression of rheb and myc-rheb in midgut stem and progenitor cells decreased the lifespan and starvation resistance of flies...
September 29, 2016: Comparative Biochemistry and Physiology. Part B, Biochemistry & Molecular Biology
Weiping Qi, Xiaoli Ma, Weiyi He, Wei Chen, Mingmin Zou, Geoff M Gurr, Liette Vasseur, Minsheng You
BACKGROUND: ATP-binding cassette (ABC) transporters are one of the major transmembrane protein families found in all organisms and play important roles in transporting a variety of compounds across intra and extra cellular membranes. In some species, ABC transporters may be involved in the detoxification of substances such as insecticides. The diamondback moth, Plutella xylostella (L.), a destructive pest of cruciferous crops worldwide, is an important species to study as it is resistant to many types of insecticides as well as biological control Bacillus thuringiensis toxins...
September 27, 2016: BMC Genomics
Hongmei Li-Byarlay, Barry R Pittendrigh, Larry L Murdock
Plants produce proteins such as protease inhibitors and lectins as defenses against herbivorous insects and pathogens. However, no systematic studies have explored the structural responses in the midguts of insects when challenged with plant defensive proteins and lectins across different species. In this study, we fed two kinds of protease inhibitors and lectins to the fruit fly Drosophila melanogaster and alpha-amylase inhibitors and lectins to the cowpea bruchid Callosobruchus maculatus. We assessed the changes in midgut cell structures by comparing them with such structures in insects receiving normal diets or subjected to food deprivation...
2016: International Journal of Insect Science
Vincent Stepanik, Leslie Dunipace, Young-Kyung Bae, Frank Macabenta, Jingjing Sun, Nathanie Trisnadi, Angelike Stathopoulos
Caudal visceral mesoderm (CVM) cells migrate from posterior to anterior of the Drosophila embryo as two bilateral streams of cells to support the specification of longitudinal muscles along the midgut. To accomplish this long-distance migration, CVM cells receive input from their environment, but little is known about how this collective cell migration is regulated. In a screen we found that wunen mutants exhibit CVM cell migration defects. Wunens are lipid phosphate phosphatases known to regulate the directional migration of primordial germ cells (PGCs)...
September 1, 2016: Development
Yan Liu, Jingjing Lin, Minjie Zhang, Kai Chen, Shengxi Yang, Qun Wang, Hongqin Yang, Shusen Xie, Yongjian Zhou, Xi Zhang, Fei Chen, Yufeng Yang
Mitophagy is the selective degradation of mitochondria by autophagy, which is an important mitochondrial quality and quantity control process. During Drosophila metamorphosis, the degradation of midgut involves a large change in length and organization, which is mediated by autophagy. Here we noticed a cell-type specific mitochondrial clearance process that occurs in enterocytes (ECs), while most mitochondria remain in intestinal stem cells (ISCs) during metamorphosis. Although PINK1/PARKIN represent the canonical pathway for the elimination of impaired mitochondria in varied pathological conditions, their roles in developmental processes or normal physiological conditions have been less studied...
August 26, 2016: Developmental Biology
Hongjie Li, Yanyan Qi, Heinrich Jasper
The gastrointestinal (GI) tract of metazoans is lined by a series of regionally distinct epithelia. To maintain structure and function of the GI tract, regionally diversified differentiation of somatic stem cell (SC) lineages is critical. The adult Drosophila midgut provides an accessible model to study SC regulation and specification in a regionally defined manner. SCs of the posterior midgut (PM) have been studied extensively, but the control of SCs in the middle midgut (MM) is less well understood. The MM contains a stomach-like copper cell region (CCR) that is regenerated by gastric stem cells (GSSCs) and contains acid-secreting copper cells (CCs)...
August 25, 2016: Developmental Biology
Xu Hu, Nina M Richtman, Jian-Zhou Zhao, Keith E Duncan, Xiping Niu, Lisa A Procyk, Meghan A Oneal, Bliss M Kernodle, Joseph P Steimel, Virginia C Crane, Gary Sandahl, Julie L Ritland, Richard J Howard, James K Presnail, Albert L Lu, Gusui Wu
RNA interference (RNAi) is a promising new technology for corn rootworm control. This paper presents the discovery of new gene targets - dvssj1 and dvssj2, in western corn rootworm (WCR). Dvssj1 and dvssj2 are orthologs of the Drosophila genes snakeskin (ssk) and mesh, respectively. These genes encode membrane proteins associated with smooth septate junctions (SSJ) which are required for intestinal barrier function. Based on bioinformatics analysis, dvssj1 appears to be an arthropod-specific gene. Diet based insect feeding assays using double-stranded RNA (dsRNA) targeting dvssj1 and dvssj2 demonstrate targeted mRNA suppression, larval growth inhibition, and mortality...
2016: Scientific Reports
Shubha R Shanbhag, Abraham T Vazhappilly, Abhay Sane, Natalie M D'Silva, Subrata Tripathi
Microbiota colonizing exposed epithelial surfaces are vital for sustenance of metazoan life, but communication between microbiota, epithelial cells and the host immune system is only beginning to be understood. We address this issue in the posterior midgut epithelium of Drosophila larvae where nutrient transport and immune functions are exclusively transcellular. We showed that larvae emerging into a sterile post-embryonic environment have symmetrical apical and basal membranes. In contrast, larvae emerging into non-sterile media, the source of microbiota, have markedly asymmetric membranes, with apical membrane conductance more than five-fold higher than the basal membranes...
July 4, 2016: Journal of Physiology
Shigeo Takashima, Patrick Aghajanian, Amelia Younossi-Hartenstein, Volker Hartenstein
Proliferating intestinal stem cells (ISCs) generate all cell types of the Drosophila midgut, including enterocytes, endocrine cells, and gland cells (e.g., copper cells), throughout the lifetime of the animal. Among the signaling mechanisms controlling the balance between ISC self-renewal and the production of different cell types, Notch (N) plays a pivotal role. In this paper we investigated the emergence of ISCs during metamorphosis and the role of N in this process. Precursors of the Drosophila adult intestinal stem cells (pISCs) can be first detected within the pupal midgut during the first hours after onset of metamorphosis as motile mesenchymal cells...
August 15, 2016: Developmental Biology
Gayle Overend, Yuan Luo, Louise Henderson, Angela E Douglas, Shireen A Davies, Julian A T Dow
The gut of Drosophila melanogaster includes a proximal acidic region (~pH 2), however the genome lacks the H(+)/K(+) ATPase characteristic of the mammalian gastric parietal cell, and the molecular mechanisms of acid generation are poorly understood. Here, we show that maintenance of the low pH of the acidic region is dependent on H(+) V-ATPase, together with carbonic anhydrase and five further transporters or channels that mediate K(+), Cl(-) and HCO3(-) transport. Abrogation of the low pH did not influence larval survival under standard laboratory conditions, but was deleterious for insects subjected to high Na(+) or K(+) load...
2016: Scientific Reports
Hiroyuki Kenmoku, Hiroki Ishikawa, Manabu Ote, Takayuki Kuraishi, Shoichiro Kurata
The metazoan gut performs multiple physiological functions, including digestion and absorption of nutrients, and also serves as a physical and chemical barrier against ingested pathogens and abrasive particles. Maintenance of these functions and structures is partly controlled by the nervous system, yet the precise roles and mechanisms of the neural control of gut integrity remain to be clarified in Drosophila Here, we screened for GAL4 enhancer-trap strains and labeled a specific subsets of neurons, using Kir2...
August 1, 2016: Journal of Experimental Biology
Jing Li, Jun Song, Yekaterina Y Zaytseva, Yajuan Liu, Piotr Rychahou, Kai Jiang, Marlene E Starr, Ji Tae Kim, Jennifer W Harris, Frederique B Yiannikouris, Wendy S Katz, Peter M Nilsson, Marju Orho-Melander, Jing Chen, Haining Zhu, Timothy Fahrenholz, Richard M Higashi, Tianyan Gao, Andrew J Morris, Lisa A Cassis, Teresa W-M Fan, Heidi L Weiss, Paul R Dobner, Olle Melander, Jianhang Jia, B Mark Evers
Obesity and its associated comorbidities (for example, diabetes mellitus and hepatic steatosis) contribute to approximately 2.5 million deaths annually and are among the most prevalent and challenging conditions confronting the medical profession. Neurotensin (NT; also known as NTS), a 13-amino-acid peptide predominantly localized in specialized enteroendocrine cells of the small intestine and released by fat ingestion, facilitates fatty acid translocation in rat intestine, and stimulates the growth of various cancers...
May 11, 2016: Nature
Alessandro Scopelliti, Christin Bauer, Julia B Cordero, Marcos Vidal
Bursicon is the main regulator of post molting and post eclosion processes during arthropod development. The active Bursicon hormone is a heterodimer of Burs-α and Burs-β. However, adult midguts express Burs-α to regulate the intestinal stem cell niche. Here, we examined the potential expression and function of its heterodimeric partner, Burs-β in the adult midgut. Unexpectedly, our evidence suggests that Burs-β is not significantly expressed in the adult midgut. burs-β mutants displayed the characteristic developmental defects but showed wild type-like adult midguts, thus uncoupling the developmental and adult phenotypes seen in burs-α mutants...
June 17, 2016: Cell Cycle
Jens-Ola Ekström, Dan Hultmark
We have created a transgenic reporter for virus infection, and used it to study Nora virus infection in Drosophila melanogaster. The transgenic construct, Munin, expresses the yeast transcription factor Gal4, tethered to a transmembrane anchor via a linker that can be cleaved by a viral protease. In infected cells, liberated Gal4 will then transcribe any gene that is linked to a promoter with a UAS motif, the target for Gal4 transcription. For instance, infected cells will glow red in the offspring of a cross between the Munin stock and flies with a UAS-RFP(nls) transgene (expressing a red fluorescent protein)...
2016: Scientific Reports
Emily J Remnant, Adam Williams, Chris Lumb, Ying Ting Yang, Janice Chan, Sebastian Duchêne, Phillip J Daborn, Philip Batterham, Trent Perry
Ligand-gated chloride channels have established roles in inhibitory neurotransmission in the nervous systems of vertebrates and invertebrates. Paradoxically, expression databases in Drosophila melanogaster have revealed that three uncharacterized ligand-gated chloride channel subunits, CG7589, CG6927, and CG11340, are highly expressed in nonneuronal tissues. Furthermore, subunit copy number varies between insects, with some orders containing one ortholog, whereas other lineages exhibit copy number increases...
2016: G3: Genes—Genomes—Genetics
Yubo Wang, Patrick DiMario
Four nucleostemin-like proteins (nucleostemin (NS) 1-4) were identified previously in Drosophila melanogaster. NS1 and NS2 are nucleolar proteins, while NS3 and NS4 are cytoplasmic proteins. We showed earlier that NS1 (homologous to human GNL3) enriches within the granular components (GCs) of Drosophila nucleoli and is required for efficient maturation or nucleolar release of the 60S subunit. Here, we show that NS2 is homologous to the human nucleostemin-like protein, Ngp1 (GNL2), and that endogenous NS2 is expressed in both progenitor and terminally differentiated cell types...
May 6, 2016: Chromosoma
Huaqi Jiang, Aiguo Tian, Jin Jiang
Many adult tissues and organs are maintained by resident stem cells that are activated in response to injury but the mechanisms that regulate stem cell activity during regeneration are still poorly understood. An emerging system to study such problem is the Drosophila adult midgut. Recent studies have identified both intrinsic factors and extrinsic niche signals that control the proliferation, self-renewal, and lineage differentiation of Drosophila adult intestinal stem cells (ISCs). These findings set up the stage to interrogate how niche signals are regulated and how they are integrated with cell-intrinsic factors to control ISC activity during normal homeostasis and regeneration...
September 2016: Cellular and Molecular Life Sciences: CMLS
Fetch more papers »
Fetching more papers... Fetching...
Read by QxMD. Sign in or create an account to discover new knowledge that matter to you.
Remove bar
Read by QxMD icon Read

Search Tips

Use Boolean operators: AND/OR

diabetic AND foot
diabetes OR diabetic

Exclude a word using the 'minus' sign

Virchow -triad

Use Parentheses

water AND (cup OR glass)

Add an asterisk (*) at end of a word to include word stems

Neuro* will search for Neurology, Neuroscientist, Neurological, and so on

Use quotes to search for an exact phrase

"primary prevention of cancer"
(heart or cardiac or cardio*) AND arrest -"American Heart Association"