Read by QxMD icon Read

Wnt neuron

Cheril Tapia-Rojas, Patricia V Burgos, Nibaldo C Inestrosa
Alzheimer's disease (AD) is the most common neurodegenerative disorder and the most frequent cause of dementia in the aged population. According to the amyloid hypothesis, the amyloid-β (Aβ) peptide plays a key role in the pathogenesis of AD. Aβ is generated from the amyloidogenic processing of amyloid precursor protein (APP) and can aggregate to form oligomers, which have been described as a major synaptotoxic agent in neurons. Dysfunction of Wnt signaling has been linked to increased Aβ formation; however, several other studies have argued against this possibility...
October 25, 2016: Journal of Neurochemistry
Zijuan Zhang, Meixia Guo, Juan Zhang, Caixia Du, Ying Xing
BACKGROUND/AIMS: Leptin, an adipocytokine produced endogenously in the brain, is decreased in Alzheimer's disease(AD) and has also been shown to reduce Aβ levels in vitro and in vivo. Sets of evidence show that leptin reduces Aβ production and tau phosphorylation in neuronal cells and transgenic mice models of AD. Herein, we investigated the signaling pathway activated by leptin, to better understand its mechanism of action. METHODS: Western blotting was performed to assess the levels of phosphor-tau and Bax, RT-PCR to check the mRNA level of Bax...
October 24, 2016: Neuro-Signals
P-M Martin, R E Stanley, A P Ross, A E Freitas, C E Moyer, A C Brumback, J Iafrati, K S Stapornwongkul, S Dominguez, S Kivimäe, K A Mulligan, M Pirooznia, W R McCombie, J B Potash, P P Zandi, S M Purcell, S J Sanders, Y Zuo, V S Sohal, B N R Cheyette
Mice lacking DIX domain containing-1 (DIXDC1), an intracellular Wnt/β-catenin signal pathway protein, have abnormal measures of anxiety, depression and social behavior. Pyramidal neurons in these animals' brains have reduced dendritic spines and glutamatergic synapses. Treatment with lithium or a glycogen synthase kinase-3 (GSK3) inhibitor corrects behavioral and neurodevelopmental phenotypes in these animals. Analysis of DIXDC1 in over 9000 cases of autism, bipolar disorder and schizophrenia reveals higher rates of rare inherited sequence-disrupting single-nucleotide variants (SNVs) in these individuals compared with psychiatrically unaffected controls...
October 18, 2016: Molecular Psychiatry
Cristina Velázquez-Marrero, Alexandra Burgos, José O García, Stephanie Palacio, Héctor G Marrero, Alexandra Bernardo, Juliana Pérez-Laspiur, Marla Rivera-Oliver, Garrett Seale, Steven N Treistman
: It has been suggested that drug tolerance represents a form of learning and memory, but this has not been experimentally established at the molecular level. We show that a component of alcohol molecular tolerance (channel internalization) from rat hippocampal neurons requires protein synthesis, in common with other forms of learning and memory. We identify β-catenin as a primary necessary protein. Alcohol increases β-catenin, and blocking accumulation of β-catenin blocks alcohol-induced internalization in these neurons...
October 12, 2016: Journal of Neuroscience: the Official Journal of the Society for Neuroscience
Prabhuanand Selvaraj, Lan Xiao, Cheol Lee, Saravana R K Murthy, Niamh X Cawley, Malcolm Lane, Istvan Merchenthaler, Sohyun Ahn, Y Peng Loh
Embryonic neurodevelopment involves inhibition of proliferation of multipotent neural stem cells followed by differentiation into neurons, astrocytes and oligodendrocytes to form the brain. We have identified a new neurotrophic factor, NF-α1, which inhibits proliferation and promotes differentiation of neural stem cell/progenitors derived from E13.5 mouse cortex. Inhibition of proliferation of these cells was mediated through negatively regulating the Wnt pathway and decreasing β-catenin. NF-α1 induced differentiation of neural stem cells to astrocytes by enhancing Glial Fibrillary Acidic Protein (GFAP) expression through activating the ERK1/2-Sox9 signaling pathway...
October 6, 2016: Stem Cells
Nora Bengoa-Vergniory, Irantzu Gorroño-Etxebarria, Inmaculada López-Sánchez, Michele Marra, Pierluigi Di Chiaro, Robert Kypta
Wnt proteins preferentially activate either β-catenin-dependent or β-catenin-independent signals, but the activity of a particular Wnt also depends on cellular context and receptor availability. We previously reported that Wnt-3a induces neural differentiation of human embryonic stem cell-derived neural stem cells (NSCs) in a β-catenin-independent manner by activating a signal involving JNK and the AP-1 family member ATF-2. Here, we report the results of a gene silencing approach to identify the Wnt receptors that mediate this response to Wnt-3a...
October 5, 2016: Molecular Neurobiology
Pedro Cisternas, Paulina Salazar, Carmen Silva-Alvarez, L Felipe Barros, Nibaldo C Inestrosa
The Wnt signaling pathway is critical for a number of functions in the central nervous system, including regulation of the synaptic cleft structure and neuroprotection against injury. Deregulation of Wnt signaling has been associated with several brain pathologies, including Alzheimer`s disease. In recent years, it has been suggested that the Wnt pathway might act as a central integrator of metabolic signals from peripheral organs to the brain, which would represent a new role for Wnt signaling in cell metabolism...
October 4, 2016: Journal of Biological Chemistry
Christopher J Sifuentes, Jung-Woong Kim, Anand Swaroop, Pamela A Raymond
Purpose: Zebrafish neurons regenerate from Müller glia following retinal lesions. Genes and signaling pathways important for retinal regeneration in zebrafish have been described, but our understanding of how Müller glial stem cell properties are regulated is incomplete. Mammalian Müller glia possess a latent neurogenic capacity that might be enhanced in regenerative therapies to treat degenerative retinal diseases. Methods: To identify transcriptional changes associated with stem cell properties in zebrafish Müller glia, we performed a comparative transcriptome analysis from isolated cells at 8 and 16 hours following an acute photic lesion, prior to the asymmetric division that produces retinal progenitors...
October 1, 2016: Investigative Ophthalmology & Visual Science
Omer Durak, Fan Gao, Yea Jin Kaeser-Woo, Richard Rueda, Anthony J Martorell, Alexi Nott, Carol Y Liu, L Ashley Watson, Li-Huei Tsai
De novo mutations in CHD8 are strongly associated with autism spectrum disorder, but the basic biology of CHD8 remains poorly understood. Here we report that Chd8 knockdown during cortical development results in defective neural progenitor proliferation and differentiation that ultimately manifests in abnormal neuronal morphology and behaviors in adult mice. Transcriptome analysis revealed that while Chd8 stimulates the transcription of cell cycle genes, it also precludes the induction of neural-specific genes by regulating the expression of PRC2 complex components...
October 3, 2016: Nature Neuroscience
Lusi Zhang, Jie Deng, Qian Pan, Yan Zhan, Jian-Bing Fan, Kun Zhang, Zhuohua Zhang
Parkinson disease (PD) is a progressive neurodegenerative movement disorder. Both environmental and genetic factors play important roles in PD etiology. A number of environmental toxins cause parkinsonism in human and animal models. Genetic studies of rare early onset familial PD cases resulted in identification of disease-linked mutations in multiple genes. Nevertheless, the potential interaction between environment and genetics in PD pathogenesis remains largely unknown. We hypothesized that environmental factors induce abnormal epigenetic regulation that is involved in the pathogenesis of both familial and sporadic PD...
May 13, 2016: Journal of Genetics and Genomics, Yi Chuan Xue Bao
Pedro Cisternas, Paulina Salazar, Carmen Silva-Álvarez, L Felipe Barros, Nibaldo C Inestrosa
In the last few years, several reports have proposed that Wnt signaling is a general metabolic regulator, suggesting a role for this pathway in the control of metabolic flux. Wnt signaling is critical for several neuronal functions, but little is known about the correlation between this pathway and energy metabolism. The brain has a high demand for glucose, which is mainly used for energy production. Neurons use energy for highly specific processes that require a high energy level, such as maintaining the electrical potential and synthesizing neurotransmitters...
2016: Neural Plasticity
Ni Xu, Ming-Zheng Wu, Xue-Ting Deng, Ping-Chuan Ma, Ze-Hua Li, Lei Liang, Meng-Fan Xia, Dong Cui, Duan-Duan He, Yuan Zong, Zhong Xie, Xue-Jun Song
UNLABELLED: Neuropathic pain, often caused by nerve injury, is a major clinical challenge. Mechanisms that underlie neuropathic pain remain elusive and effective medications are limited. Numerous investigations of pain mechanisms have focused on alterations and phenotypic switches of the nociceptive transmitters and modulators, as well as on their receptors and downstream signaling pathways that have already exerted roles in the pain processes of mature nervous systems. We have demonstrated recently that nerve injury may elicit neuronal alterations that recapitulate events occurring during development...
September 28, 2016: Journal of Neuroscience: the Official Journal of the Society for Neuroscience
Kai Yao, Suo Qiu, Lin Tian, William D Snider, John G Flannery, David V Schaffer, Bo Chen
In cold-blooded vertebrates such as zebrafish, Müller glial cells (MGs) readily proliferate to replenish lost retinal neurons. In mammals, however, MGs lack regenerative capability as they do not spontaneously re-enter the cell cycle unless the retina is injured. Here, we show that gene transfer of β-catenin in adult mouse retinas activates Wnt signaling and MG proliferation without retinal injury. Upstream of Wnt, deletion of GSK3β stabilizes β-catenin and activates MG proliferation. Downstream of Wnt, β-catenin binds to the Lin28 promoter and activates transcription...
September 27, 2016: Cell Reports
Jan Kriska, Pavel Honsa, David Dzamba, Olena Butenko, Denisa Kolenicova, Lucie Janeckova, Zuzana Nahacka, Ladislav Andera, Zbynek Kozmik, M Mark Taketo, Vladimir Korinek, Miroslava Anderova
The canonical Wnt signaling pathway plays an important role in embryogenesis, and the establishment of neurogenic niches. It is involved in proliferation and differentiation of neural progenitors, since elevated Wnt/β-catenin signaling promotes differentiation of neural stem/progenitor cells (NS/PCs(1)) towards neuroblasts. Nevertheless, it remains elusive how the differentiation program of neural progenitors is influenced by the Wnt signaling output. Using transgenic mouse models, we found that in vitro activation of Wnt signaling resulted in higher expression of β-catenin protein and Wnt/β-catenin target genes, while Wnt signaling inhibition resulted in the reverse effect...
September 19, 2016: Brain Research
Nathan D Okerlund, Robert E Stanley, Benjamin N R Cheyette
The transmembrane protein Vangl2, a key regulator of the Wnt/planar cell polarity (PCP) pathway, is involved in dendrite arbor elaboration, dendritic spine formation and glutamatergic synapse formation in mammalian central nervous system neurons. Cultured forebrain neurons from Vangl2 knockout mice have simpler dendrite arbors, fewer total spines, less mature spines and fewer glutamatergic synapse inputs on their dendrites than control neurons. Neurons from mice heterozygous for a semidominant Vangl2 mutation have similar but not identical phenotypes, and these phenotypes are also observed in Golgi-stained brain tissue from adult mutant mice...
July 2016: Molecular Neuropsychiatry
J Alberto Ortega, Carissa L Sirois, Fani Memi, Nicole Glidden, Nada Zecevic
The oxygen (O2) concentration is a vital parameter for controlling the survival, proliferation, and differentiation of neural stem cells. A prenatal reduction of O2 levels (hypoxia) often leads to cognitive and behavioral defects, attributable to altered neural development. In this study, we analyzed the effects of O2 levels on human cortical progenitors, the radial glia cells (RGCs), during active neurogenesis, corresponding to the second trimester of gestation. Small changes in O2 levels profoundly affected RGC survival, proliferation, and differentiation...
September 6, 2016: Cerebral Cortex
Clara Herrera-Arozamena, Olaia Martí-Marí, Martín Estrada, Mario de la Fuente Revenga, María Isabel Rodríguez-Franco
The central nervous system of adult mammals has long been considered as a complex static structure unable to undergo any regenerative process to refurbish its dead nodes. This dogma was challenged by Altman in the 1960s and neuron self-renewal has been demonstrated ever since in many species, including humans. Aging, neurodegenerative, and some mental diseases are associated with an exponential decrease in brain neurogenesis. Therefore, the controlled pharmacological stimulation of the endogenous neural stem cells (NSCs) niches might counteract the neuronal loss in Alzheimer's disease (AD) and other pathologies, opening an exciting new therapeutic avenue...
2016: Molecules: a Journal of Synthetic Chemistry and Natural Product Chemistry
Daniel Rusiecki, Boleslaw Lach, Branavan Manoranjan, Adam Fleming, Olufemi Ajani, Sheila K Singh
We report a childhood case of thalamic atypical extraventricular neurocytoma that progressed to highly anaplastic ganglioglioma (GG) after eight years of dormancy following subtotal resection and chemotherapy. The neurocytoma displayed immunoreactivity only for synaptophysin, beta-catenin, S-100 and CD56. The GG acquired strong immunoreactivity for chromogranin, glial fibrillary acidic protein, neuron specific enolase and p53 and showed a very high proliferation rate approaching 50% in some areas. Tumor transformation was associated with overexpression of components of the sonic hedgehog (Shh) and Wnt developmental signaling pathways, which are known to regulate tumor-initiating cells in malignant brain neoplasms...
September 2, 2016: Human Pathology
Aude Marzo, Soledad Galli, Douglas Lopes, Faye McLeod, Marina Podpolny, Margarita Segovia-Roldan, Lorenza Ciani, Silvia Purro, Francesca Cacucci, Alasdair Gibb, Patricia C Salinas
Synapse degeneration occurs early in neurodegenerative diseases and correlates strongly with cognitive decline in Alzheimer's disease (AD). The molecular mechanisms that trigger synapse vulnerability and those that promote synapse regeneration after substantial synaptic failure remain poorly understood. Increasing evidence suggests a link between a deficiency in Wnt signaling and AD. The secreted Wnt antagonist Dickkopf-1 (Dkk1), which is elevated in AD, contributes to amyloid-β-mediated synaptic failure. However, the impact of Dkk1 at the circuit level and the mechanism by which synapses disassemble have not yet been explored...
October 10, 2016: Current Biology: CB
Kiran Kumar Bokara, Jae Hwan Kim, Jae Young Kim, Jong Eun Lee
Growing evidence suggests that the clinical use of neural progenitor cells (NPCs) is hampered by heterogeneity, poor neuronal yield and low survival rate. Recently, we reported that retrovirus-delivered human arginine decarboxylase (hADC) genes improve cell survival against oxidative insult in murine NPCs in vitro. This study investigates whether the induced expression of hADC gene in mNPCs induces any significant change in the cell fate commitment. The evaluation of induced hADC gene function was assessed by knockdown of hADC gene using specific siRNA...
August 17, 2016: Stem Cell Research
Fetch more papers »
Fetching more papers... Fetching...
Read by QxMD. Sign in or create an account to discover new knowledge that matter to you.
Remove bar
Read by QxMD icon Read

Search Tips

Use Boolean operators: AND/OR

diabetic AND foot
diabetes OR diabetic

Exclude a word using the 'minus' sign

Virchow -triad

Use Parentheses

water AND (cup OR glass)

Add an asterisk (*) at end of a word to include word stems

Neuro* will search for Neurology, Neuroscientist, Neurological, and so on

Use quotes to search for an exact phrase

"primary prevention of cancer"
(heart or cardiac or cardio*) AND arrest -"American Heart Association"