Read by QxMD icon Read

kinesine motor protein

Shujuan Tian, Jingjing Wu, Fen Li, Jianwei Zou, Yuwen Liu, Bing Zhou, Yang Bai, Meng-Xiang Sun
Kinesins comprise a superfamily of microtubule-based motor proteins involved in essential processes in plant development, but few kinesins have been functionally identified during seed development. Especially, few kinesins that regulate cell division during embryogenesis have been identified. Here we report the functional characterization of NtKRP, a motor protein of the kinesin-12 family. NtKRP is predominantly expressed in embryos and embryonic roots. NtKRP RNAi lines displayed reductions in cell numbers in the meristematic zone, in embryonic root length, and in mature embryo and seed sizes...
October 25, 2016: Scientific Reports
Sylvia Neumann, Romain Chassefeyre, George E Campbell, Sandra E Encalada
In axons, proper localization of proteins, vesicles, organelles, and other cargoes is accomplished by the highly regulated coordination of kinesins and dyneins, molecular motors that bind to cargoes and translocate them along microtubule (MT) tracks. Impairment of axonal transport is implicated in the pathogenesis of multiple neurodegenerative disorders including Alzheimer's and Huntington's diseases. To understand how MT-based cargo motility is regulated and to delineate its role in neurodegeneration, it is critical to analyze the detailed dynamics of moving cargoes inside axons...
October 22, 2016: Traffic
Mara Cavallin, Emilia K Bijlsma, Adrienne El Morjani, Sébastien Moutton, Els A J Peeters, Camille Maillard, Jean Michel Pedespan, Anne-Marie Guerrot, Valérie Drouin-Garaud, Christine Coubes, David Genevieve, Christine Bole-Feysot, Cecile Fourrage, Julie Steffann, Nadia Bahi-Buisson
Kinesins play a critical role in the organization and dynamics of the microtubule cytoskeleton, making them central players in neuronal proliferation, neuronal migration, and postmigrational development. Recently, KIF2A mutations were identified in cortical malformation syndromes associated with microcephaly. Here, we detected two de novo p.Ser317Asn and p.His321Pro mutations in KIF2A in two patients with lissencephaly and microcephaly. In parallel, we re-evaluated the two previously reported cases showing de novo mutations of the same residues...
October 17, 2016: Neurogenetics
Bert Nitzsche, Elzbieta Dudek, Lukasz Hajdo, Andrzej A Kasprzak, Andrej Vilfan, Stefan Diez
Single-molecule experiments have been used with great success to explore the mechanochemical cycles of processive motor proteins such as kinesin-1, but it has proven difficult to apply these approaches to nonprocessive motors. Therefore, the mechanochemical cycle of kinesin-14 (ncd) is still under debate. Here, we use the readout from the collective activity of multiple motors to derive information about the mechanochemical cycle of individual ncd motors. In gliding motility assays we performed 3D imaging based on fluorescence interference contrast microscopy combined with nanometer tracking to simultaneously study the translation and rotation of microtubules...
October 11, 2016: Proceedings of the National Academy of Sciences of the United States of America
Anna Melkov, Raju Baskar, Yehonatan Alcalay, Uri Abdu
Intrinsic cell microtubule (MT) polarity, together with molecular motors and adaptor proteins, determines mitochondrial polarized targeting and MT-dependent transport. In polarized cells, such as neurons, mitochondrial mobility and transport require the regulation of kinesin and dynein by two adaptor proteins, Milton and Miro. Recently, we found that dynein heavy chain 64C (Dhc64C) is the primary motor protein for both anterograde and retrograde transport of mitochondria in the Drosophila bristle. In this study, we revealed that a molecular lesion in the Dhc64C allele that reduced bristle mitochondrial velocity generated a variant that acts as a "slow" dynein in a MT gliding assay, indicative of dynein directly regulating mitochondrial transport...
October 5, 2016: Development
Courtney R Bone, Yu-Tai Chang, Natalie E Cain, Shaun P Murphy, Daniel A Starr
Cellular migrations through constricted spaces are a critical aspect of many developmental and disease processes including hematopoiesis, inflammation, and metastasis. A limiting factor in these events is nuclear deformation. Here, we establish an in vivo model where nuclei can be visualized while moving through constrictions and use it to elucidate mechanisms for nuclear migration. C. elegans hypodermal P-cell larval nuclei traverse a narrow space about 5% their width. This constriction is blocked by fibrous organelles, structures connecting the muscles to cuticle through P cells...
October 3, 2016: Development
Indira Singh Chauhan, Rantidev Shukla, Shagun Krishna, Savita Sekhri, Umesh Kaushik, Sabitha Baby, Chiranjib Pal, Mohammad Imran Siddiqi, Shyam Sundar, Neeloo Singh
Rab proteins form the largest branch of the Ras superfamily. Rab proteins are key regulators of intracellular vesicular transport and membrane trafficking. Although RabGTPases are well-recognized targets in human diseases but are under-explored therapeutically in the Leishmania parasite. Using a quantitative cytofluorimetric assay, we analyzed the composition and organization of Rab6GTPase protein which was found to be primarily localized on the parasite subpellicular membrane and flagellum due to its association with kinesin motor proteins in the cytoskeletal microtubules...
September 22, 2016: Experimental Parasitology
K Kim, A Sikora, H Nakazawa, M Umetsu, W Hwang, W Teizer
We report fluorescence microscopy studies of the formation of aster-like structures emerging from a cellular element-based active system and a novel analysis of the aster condensation. The system consists of rhodamine labeled microtubules which are dynamically coupled by functionalized kinesin motor proteins cross-linked via streptavidin-coated quantum dots (QDs). The aster-shaped objects contain core structures. The cores are aggregates of the QD-motor protein complexes, and result from the dynamic condensation of sub-clusters that are connected to each other randomly...
2016: Physical Biology
Jinwei Zhu, Yuan Shang, Yitian Xia, Rongguang Zhang, Mingjie Zhang
The membrane-associated guanylate kinase (MAGUK) scaffold proteins share a signature guanylate kinase (GK) domain. Despite their diverse functional roles in cell polarity control and synaptic signaling, the currently known mode of action of MAGUK GK is via its binding to phosphorylated short peptides from target proteins. Here, we discover that the GK domain of DLG MAGUK binds to an unphosphorylated and autonomously folded domain within the stalk region (MAGUK binding stalk [MBS] domain) of a kinesin motor KIF13B with high specificity and affinity...
September 15, 2016: Structure
Hui-Shun Kuan, Meredith D Betterton
Motor protein motion on biopolymers can be described by models related to the totally asymmetric simple exclusion process (TASEP). Inspired by experiments on the motion of kinesin-4 motors on antiparallel microtubule overlaps, we analyze a model incorporating the TASEP on two antiparallel lanes with binding kinetics and lane switching. We determine the steady-state motor density profiles using phase-plane analysis of the steady-state mean field equations and kinetic Monte Carlo simulations. We focus on the density-density phase plane, where we find an analytic solution to the mean field model...
August 2016: Physical Review. E
David M Higgins, Natalie J Nannas, R Kelly Dawe
The classic maize mutant divergent spindle-1 (dv1) causes failures in meiotic spindle assembly and a decrease in pollen viability. By analyzing two independent dv1 alleles we demonstrate that this phenotype is caused by mutations in a member of the kinesin-14A subfamily, a class of C-terminal, minus-end directed microtubule motors. Further analysis demonstrates that defects in early spindle assembly are rare, but that later stages of spindle organization promoting the formation of finely focused spindle poles are strongly dependent on Dv1...
2016: Frontiers in Plant Science
Ewa Szczęsna, Andrzej A Kasprzak
End-binding proteins are capable of tracking the plus-ends of growing microtubules (MTs). The motor protein Ncd, a member of the kinesin-14 family, interacts with EB1 protein and becomes a non-autonomous tip-tracker. Here, we attempted to find out whether at least for Ncd, the efficient EB1-mediated tip-tracking involves the interaction of the kinesin with the MT surface. We prepared a series of Ncd tail mutants in which the MT-binding sites were altered or eliminated. Using TIRF microscopy, we characterized their behavior as tip-trackers and measured the dwell times of single molecules of EB1 and Ncd tail or its mutated forms...
August 31, 2016: European Journal of Cell Biology
Mitra Shojania Feizabadi, Yonggun Jun, J N Babu Reddy
The kinesin 5 motor contributes critically to mitosis, and is often upregulated in cancer. In vitro motility studies of kinesin 5 moving along bovine brain microtubules indicate that the motors have limited processivity. Cancer cells have abnormal mitotic behavior, so one might wonder whether the functional properties of kinesin 5 change in such a background. Because there could be multiple unknown changes in cancerous vs normal cells, we chose to address this question in a controlled in vitro environment...
September 30, 2016: Biochemical and Biophysical Research Communications
Mai Kasahara, Makoto Nagahara, Tsuyoshi Nakagawa, Toshiaki Ishikawa, Takanobu Sato, Hiroyuki Uetake, Kenichi Sugihara
Recently, kinesin motor proteins have been focused on as targets for cancer therapy. Kinesins are microtubule-based motor proteins that mediate diverse functions within the cell, including the transport of vesicles, organelles, chromosomes and protein complexes, as well as the movement of microtubules. In the current study, the expression of kinesin family member 18A (KIF18A), a member of kinesin superfamily, was investigated in breast cancer using immunohistochemistry, and its effect on breast cancer prognosis was examined...
September 2016: Oncology Letters
Julian Scherer, Zachary A Yaffe, Michael Vershinin, Lynn W Enquist
: Alpha herpesviruses, such as herpes simplex virus and pseudorabies virus (PRV), are neuroinvasive dsDNA viruses that establish life-long latency in peripheral nervous system (PNS) neurons of their native hosts. Following reactivation, the infection can spread back to the initial mucosal site of infection or, in rare cases, to the central nervous system with usually serious outcomes. During entry and egress, viral capsids depend on microtubule-based molecular motors for efficient and fast transport...
August 31, 2016: Journal of Virology
Martin Schuster, Magdalena Martin-Urdiroz, Yujiro Higuchi, Christian Hacker, Sreedhar Kilaru, Sarah J Gurr, Gero Steinberg
Fungal cells are surrounded by an extracellular cell wall. This complex matrix of proteins and polysaccharides protects against adverse stresses and determines the shape of fungal cells. The polysaccharides of the fungal wall include 1,3-β-glucan and chitin, which are synthesized by membrane-bound synthases at the growing cell tip. A hallmark of filamentous fungi is the class V chitin synthase, which carries a myosin-motor domain. In the corn smut fungus Ustilago maydis, the myosin-chitin synthase Mcs1 moves to the plasma membrane in secretory vesicles, being delivered by kinesin-1 and myosin-5...
2016: Nature Microbiology
Claire E Walczak, Hailing Zong, Sachin Jain, Jane R Stout
The spatial and temporal control of microtubule dynamics is fundamentally important for proper spindle assembly and chromosome segregation. This is achieved, in part, by the multitude of proteins that bind to and regulate spindle microtubules, including kinesin superfamily members, which act as microtubule-destabilizing enzymes. These fall into two general classes: the kinesin-13 proteins, which directly depolymerize microtubules, and the kinesin-8 proteins, which are plus end-directed motors that either destabilize microtubules or cap the microtubule plus ends...
October 15, 2016: Molecular Biology of the Cell
Shou Soeda, Kaori Yamada-Nomoto, Miho Ohsugi
Mitotic chromosomes move dynamically along the spindle microtubules using the forces generated by motor proteins such as chromokinesin Kid (also known as KIF22). Kid generates a polar ejection force and contributes to alignment of the chromosome arms during prometaphase and metaphase, whereas during anaphase, Kid contributes to chromosome compaction. How Kid is regulated and how this regulation is important for chromosome dynamics remains unclear. Here, we address these questions by expressing mutant forms of Kid in Kid-deficient cells...
October 1, 2016: Journal of Cell Science
Martin Michael Möckel, Corinna Hund, Thomas Ulrich Mayer
Due to their fast and often reversible mode-of-action, small molecules are ideally suited to dissect biological processes. Yet, the validity of small molecule studies is intimately tied to the specificity of the applied compounds imposing a great challenge to screens for novel inhibitors. Here, we applied a chemical genetics approach to render kinesin motor proteins sensitive to inhibition by the well-characterized small molecule S-Trityl-L-cysteine (STLC). STLC specifically inhibits the kinesin Eg5 through binding to a known allosteric site within the motor domain...
August 23, 2016: Chembiochem: a European Journal of Chemical Biology
N A Vasilyeva, A S Pivovarov
Motor proteins of microtubules, kinesin and dynein superfamily proteins play an important role in the intracellular transport. Inside a neuron they are involved in the transport of organelles, proteins and mRNAs along the axons and dendrites to the nerve terminals and back to the cell bodies. Disturbance of axonal transport may affect neurotransmitter release and short-term presynaptic plasticity. Disturbance of dendritic transport, in particular the recycling of synaptic receptors, affects postsynaptic plasticity...
March 2016: Zhurnal Vyssheĭ Nervnoĭ Deiatelnosti Imeni I P Pavlova
Fetch more papers »
Fetching more papers... Fetching...
Read by QxMD. Sign in or create an account to discover new knowledge that matter to you.
Remove bar
Read by QxMD icon Read

Search Tips

Use Boolean operators: AND/OR

diabetic AND foot
diabetes OR diabetic

Exclude a word using the 'minus' sign

Virchow -triad

Use Parentheses

water AND (cup OR glass)

Add an asterisk (*) at end of a word to include word stems

Neuro* will search for Neurology, Neuroscientist, Neurological, and so on

Use quotes to search for an exact phrase

"primary prevention of cancer"
(heart or cardiac or cardio*) AND arrest -"American Heart Association"