keyword
MENU ▼
Read by QxMD icon Read
search

parkin and parkinson disease

keyword
https://www.readbyqxmd.com/read/28340952/lack-of-association-of-mortalin-hspa9-and-other-mitochondria-related-genes-with-risk-of-parkinson-s-and-alzheimer-s-diseases
#1
Sun Ju Chung, Mi-Jung Kim, Ho-Sung Ryu, Juyeon Kim, Young Jin Kim, Kiju Kim, Sooyeoun You, Seong Yoon Kim, Jae-Hong Lee
We investigated the role of mortalin (HSPA9) and its interaction with other mitochondria-related genes (parkin, PINK1, DJ1, and COQ2) as a risk factor for Parkinson's disease (PD) and Alzheimer's disease (AD) in 500 PD, 400 AD, and 500 control subjects. The HSPA9 variants identified by direct sequencing or its interaction with other genes assessed by genetic risk scores did not show a significant association with PD or AD risk. Our findings did not provide a strong evidence for the role of HAPA9 and its interaction with other mitochondria-related genes as a genetic risk factor for PD or AD...
January 2017: Neurobiology of Aging
https://www.readbyqxmd.com/read/28335015/the-synaptic-function-of-parkin
#2
Jenny Sassone, GiuliaMaia Serratto, Flavia Valtorta, Vincenzo Silani, Maria Passafaro, Andrea Ciammola
Loss of function mutations in the gene PARK2, which encodes the protein parkin, cause autosomal recessive juvenile parkinsonism, a neurodegenerative disease characterized by degeneration of the dopaminergic neurons localized in the substantia nigra pars compacta. No therapy is effective in slowing disease progression mostly because the pathogenesis of the disease is yet to be understood. From accruing evidence suggesting that the protein parkin directly regulates synapses it can be hypothesized that PARK2 gene mutations lead to early synaptic damage that results in dopaminergic neuron loss over time...
February 23, 2017: Brain: a Journal of Neurology
https://www.readbyqxmd.com/read/28324489/monitoring-mitochondrial-changes-by-alteration-of-the-pink1-parkin-signaling-in-drosophila
#3
Tsuyoshi Inoshita, Kahori Shiba-Fukushima, Hongrui Meng, Nobutaka Hattori, Yuzuru Imai
Mitochondrial quality control is a key process in tissues with high energy demands, such as the brain and muscles. Recent studies using Drosophila have revealed that the genes responsible for familial forms of juvenile Parkinson's disease (PD), PINK1 and Parkin regulate mitochondrial function and motility. Cell biological analysis using mammalian cultured cells suggests that the dysregulation of mitophagy by PINK1 and Parkin leads to neurodegeneration in PD. In this chapter, we describe the methods to monitor mitochondrial morphology in the indirect flight muscles of adult Drosophila and Drosophila primary cultured neurons and the methods to analyze the motility of mitochondria in the axonal transport of living larval motor neurons...
March 22, 2017: Methods in Molecular Biology
https://www.readbyqxmd.com/read/28306509/the-pten-parkin-axis-at-the-nexus-of-cancer-and-neurodegeneration
#4
Nathan T Ihle, Robert T Abraham
The PARK2 gene encodes an ubiquitin E3 ligase that is involved in mitochondrial homeostasis and linked to Parkinson's disease. In this issue, Gupta et al. (2017) demonstrate that PARK2 expression is frequently reduced in human cancers and that this alteration leads to dysregulated PI3K signaling.
March 16, 2017: Molecular Cell
https://www.readbyqxmd.com/read/28289797/-epidemiology-and-causes-of-parkinson-s-disease
#5
C M Lill, C Klein
Parkinson's disease (PD) is the second most common neurodegenerative disease and has a growing socioeconomic impact due to demographic changes in the industrial nations. There are several forms of PD, a fraction of which (<5%) are monogenic, i. e. caused by mutations in single genes. At present, six genes have been established for the clinically classical form of parkinsonism including three autosomal dominantly (SNCA, LRRK2, VPS35) and three autosomal recessively inherited ones (Parkin, PINK1, DJ-1)...
March 13, 2017: Der Nervenarzt
https://www.readbyqxmd.com/read/28284907/minocycline-protects-rescues-and-prevents-knockdown-transgenic-parkin-drosophila-against-paraquat-iron-toxicity-implications-for-autosomic-recessive-juvenile-parkinsonism
#6
Hector Flavio Ortega-Arellano, Marlene Jimenez-Del-Rio, Carlos Velez-Pardo
Autosomal recessive Juvenile Parkinsonism (AR-JP) is a chronic, progressive neurodegenerative disorder caused by mutation in the PARKIN gene, and invariably associated with dopaminergic (DAergic) neuronal loss and brain iron accumulation. Since current medical therapy is symptomatic and lacks significant disease-modifying effects, other treatment approaches are urgently needed it. In the present work, we investigate the role of minocycline (MC) in paraquat (PQ)/iron-induced neurotoxicity in the Drosophila TH>parkin-RNAi/+ (w[*]; UAS-parkin-RNAi; TH-GAL4) fly and have shown the following: (i) MC increased life span and restored the locomotor activity of knockdown (KD) transgenic parkin flies in comparison with the control (vehicle) group; (ii) MC at low (0...
March 8, 2017: Neurotoxicology
https://www.readbyqxmd.com/read/28281653/nix-restores-mitophagy-and-mitochondrial-function-to-protect-against-pink1-parkin-related-parkinson-s-disease
#7
Brianada Koentjoro, Jin-Sung Park, Carolyn M Sue
Therapeutic targets are needed to develop neuroprotective treatments for Parkinson's disease (PD). Mitophagy, the selective autophagic elimination of dysfunctional mitochondria, is essential for the maintenance of mitochondrial integrity and is predominantly regulated by the PINK1/Parkin-mediated pathway. Loss of function mutations in Parkin and PINK1 cause an accumulation of dysfunctional mitochondria, leading to nigral neurodegeneration and early-onset PD with a high penetrance rate. We previously identified an asymptomatic homozygous Parkin mutation carrier who had not developed PD by her eighth decade despite the loss of functional Parkin...
March 10, 2017: Scientific Reports
https://www.readbyqxmd.com/read/28273718/mechanisms-of-parkinson-s-disease-related-proteins-in-mediating-secondary-brain-damage-after-cerebral-ischemia
#8
TaeHee Kim, Raghu Vemuganti
Both Parkinson's disease (PD) and stroke are debilitating conditions that result in neuronal death and loss of neurological functions. These two conditions predominantly affect aging populations with the deterioration of the quality of life for the patients themselves and a tremendous burden to families. While the neurodegeneration and symptomology of PD develop chronically over the years, post-stroke neuronal death and dysfunction develop rapidly in days. Despite the discrepancy in the pathophysiological time frame and severity, both conditions share common molecular mechanisms that include oxidative stress, mitochondrial dysfunction, inflammation, endoplasmic reticulum stress, and activation of various cell death pathways (apoptosis/necrosis/autophagy) that synergistically modulate the neuronal death...
January 1, 2017: Journal of Cerebral Blood Flow and Metabolism
https://www.readbyqxmd.com/read/28254618/parkin-promotes-proteasomal-degradation-of-synaptotagmin-iv-by-accelerating-polyubiquitination
#9
Hiroyuki Kabayama, Naoko Tokushige, Makoto Takeuchi, Miyuki Kabayama, Mitsunori Fukuda, Katsuhiko Mikoshiba
Parkin is an E3 ubiquitin ligase whose mutations cause autosomal recessive juvenile Parkinson's disease (PD). Unlike the human phenotype, parkin knockout (KO) mice show no apparent dopamine neuron degeneration, although they demonstrate reduced expression and activity of striatal mitochondrial proteins believed to be necessary for neuronal survival. Instead, parkin-KO mice show reduced striatal evoked dopamine release, abnormal synaptic plasticity, and non-motor symptoms, all of which appear to mimic the preclinical features of Parkinson's disease...
February 22, 2017: Molecular and Cellular Neurosciences
https://www.readbyqxmd.com/read/28251677/mitochondrial-dna-and-primary-mitochondrial-dysfunction-in-parkinson-s-disease
#10
REVIEW
Maria Pia Giannoccaro, Chiara La Morgia, Giovanni Rizzo, Valerio Carelli
In 1979, it was observed that parkinsonism could be induced by a toxin inhibiting mitochondrial respiratory complex I. This initiated the long-standing hypothesis that mitochondrial dysfunction may play a key role in the pathogenesis of Parkinson's disease (PD). This hypothesis evolved, with accumulating evidence pointing to complex I dysfunction, which could be caused by environmental or genetic factors. Attention was focused on the mitochondrial DNA, considering the occurrence of mutations, polymorphic haplogroup-specific variants, and defective mitochondrial DNA maintenance with the accumulation of multiple deletions and a reduction of copy number...
March 2, 2017: Movement Disorders: Official Journal of the Movement Disorder Society
https://www.readbyqxmd.com/read/28237103/automated-analysis-of-fluorescence-colocalization-application-to-mitophagy
#11
A Sauvat, H Zhou, M Leduc, L C Gomes-da-Silva, L Bezu, K Müller, S Forveille, P Liu, L Zhao, G Kroemer, O Kepp
Mitophagy is a peculiar form of organelle-specific autophagy that targets mitochondria. This process ensures cellular homeostasis, as it fosters the disposal of aged and damaged mitochondria that otherwise would be prone to produce reactive oxygen species and hence endanger genomic stability. Similarly, autophagic clearance of depolarized mitochondria plays a fundamental role in organismal homeostasis as exemplified by the link between Parkinson disease and impaired function of the mitophagy-mediating proteins PINK1 and Parkin...
2017: Methods in Enzymology
https://www.readbyqxmd.com/read/28231468/parkinson-sac-domain-mutation-in-synaptojanin-1-impairs-clathrin-uncoating-at-synapses-and-triggers-dystrophic-changes-in-dopaminergic-axons
#12
Mian Cao, Yumei Wu, Ghazaleh Ashrafi, Amber J McCartney, Heather Wheeler, Eric A Bushong, Daniela Boassa, Mark H Ellisman, Timothy A Ryan, Pietro De Camilli
Synaptojanin 1 (SJ1) is a major presynaptic phosphatase that couples synaptic vesicle endocytosis to the dephosphorylation of PI(4,5)P2, a reaction needed for the shedding of endocytic factors from their membranes. While the role of SJ1's 5-phosphatase module in this process is well recognized, the contribution of its Sac phosphatase domain, whose preferred substrate is PI4P, remains unclear. Recently a homozygous mutation in its Sac domain was identified in early-onset parkinsonism patients. We show that mice carrying this mutation developed neurological manifestations similar to those of human patients...
February 22, 2017: Neuron
https://www.readbyqxmd.com/read/28224980/alpha-synuclein-prevents-the-formation-of-spherical-mitochondria-and-apoptosis-under-oxidative-stress
#13
Stefanie Menges, Georgia Minakaki, Patrick M Schaefer, Holger Meixner, Iryna Prots, Ursula Schlötzer-Schrehardt, Kristina Friedland, Beate Winner, Tiago F Outeiro, Konstanze F Winklhofer, Christine A F von Arnim, Wei Xiang, Jürgen Winkler, Jochen Klucken
Oxidative stress (OS), mitochondrial dysfunction, and dysregulation of alpha-synuclein (aSyn) homeostasis are key pathogenic factors in Parkinson's disease. Nevertheless, the role of aSyn in mitochondrial physiology remains elusive. Thus, we addressed the impact of aSyn specifically on mitochondrial response to OS in neural cells. We characterize a distinct type of mitochondrial fragmentation, following H2O2 or 6-OHDA-induced OS, defined by spherically-shaped and hyperpolarized mitochondria, termed "mitospheres"...
February 22, 2017: Scientific Reports
https://www.readbyqxmd.com/read/28224479/modulation-of-arts-and-xiap-by-parkin-is-associated-with-carnosic-acid-protects-sh-sy5y-cells-against-6-hydroxydopamine-induced-apoptosis
#14
Ru-Huei Fu, Li-Chun Huang, Chia-Yuan Lin, Chia-Wen Tsai
The mediation of apoptosis-related protein in the TGF-β signaling pathway (ARTS) and X-liked inhibitor of apoptosis protein (XIAP) by parkin plays a critical role in preventing Parkinson's disease. We studied whether carnosic acid (CA) could prevent 6-hydroxydopamine (6-OHDA)-induced apoptosis by modulating ARTS and XIAP through parkin in SH-SY5Y cells. In cells treated with 6-OHDA, the protein expression of ARTS is increased and XIAP is decreased. Pretreatment of cells with CA reversed these effects. Moreover, CA attenuated the activation of caspase 9 and caspase 7 by 6-OHDA...
February 21, 2017: Molecular Neurobiology
https://www.readbyqxmd.com/read/28222538/vps35-the-retromer-complex-and-parkinson-s-disease
#15
Erin T Williams, Xi Chen, Darren J Moore
Mutations in the vacuolar protein sorting 35 ortholog (VPS35) gene encoding a core component of the retromer complex, have recently emerged as a new cause of late-onset, autosomal dominant familial Parkinson's disease (PD). A single missense mutation, AspD620Asn (D620N), has so far been unambiguously identified to cause PD in multiple individuals and families worldwide. The exact molecular mechanism(s) by which VPS35 mutations induce progressive neurodegeneration in PD are not yet known. Understanding these mechanisms, as well as the perturbed cellular pathways downstream of mutant VPS35, is important for the development of appropriate therapeutic strategies...
February 8, 2017: Journal of Parkinson's Disease
https://www.readbyqxmd.com/read/28213158/pink1-parkin-mitophagy-and-neurodegeneration-what-do-we-really-know-in-vivo
#16
REVIEW
Alexander J Whitworth, Leo J Pallanck
Mitochondria are essential organelles that provide cellular energy and buffer cytoplasmic calcium. At the same time they produce damaging reactive oxygen species and sequester pro-apoptotic factors. Hence, eukaryotes have evolved exquisite homeostatic processes that maintain mitochondrial integrity, or ultimately remove damaged organelles. This subject has garnered intense interest recently following the discovery that two Parkinson's disease genes, PINK1 and parkin, regulate mitochondrial degradation (mitophagy)...
February 14, 2017: Current Opinion in Genetics & Development
https://www.readbyqxmd.com/read/28213071/pla2g6-accumulates-in-lewy-bodies-in-park14-and-idiopathic-parkinson-s-disease
#17
Yasuo Miki, Kunikazu Tanji, Fumiaki Mori, Akiyoshi Kakita, Hitoshi Takahashi, Koichi Wakabayashi
The histopathological hallmark of Parkinson's disease (PD) and dementia with Lewy bodies (DLB) is the occurrence of insoluble fibrillary aggregates known as Lewy bodies, in which phosphorylated α-synuclein (α-syn) is a major component. To date, familial PD-linked gene products, including α-syn, parkin, PINK-1, DJ-1 and LRRK2, are known to be involved in Lewy body formation. Phospholipase A2, group VI (PLA2G6) is the causative gene for PARK14-linked parkinsonism (PARK14), a familial form of juvenile-onset dystonia parkinsonism...
February 14, 2017: Neuroscience Letters
https://www.readbyqxmd.com/read/28211874/datf4-regulation-of-mitochondrial-folate-mediated-one-carbon-metabolism-is-neuroprotective
#18
Ivana Celardo, Susann Lehmann, Ana C Costa, Samantha Hy Loh, L Miguel Martins
Neurons rely on mitochondria as their preferred source of energy. Mutations in PINK1 and PARKIN cause neuronal death in early-onset Parkinson's disease (PD), thought to be due to mitochondrial dysfunction. In Drosophila pink1 and parkin mutants, mitochondrial defects lead to the compensatory upregulation of the mitochondrial one-carbon cycle metabolism genes by an unknown mechanism. Here we uncover that this branch is triggered by the activating transcription factor 4 (ATF4). We show that ATF4 regulates the expression of one-carbon metabolism genes SHMT2 and NMDMC as a protective response to mitochondrial toxicity...
February 17, 2017: Cell Death and Differentiation
https://www.readbyqxmd.com/read/28205494/language-deficits-as-a-preclinical-window-into-parkinson-s-disease-evidence-from-asymptomatic-parkin-and-dardarin-mutation-carriers
#19
Adolfo M García, Lucas Sedeño, Natalia Trujillo, Yamile Bocanegra, Diana Gomez, David Pineda, Andrés Villegas, Edinson Muñoz, William Arias, Agustín Ibáñez
OBJECTIVES: The worldwide spread of Parkinson's disease (PD) calls for sensitive and specific measures enabling its early (or, ideally, preclinical) detection. Here, we use language measures revealing deficits in PD to explore whether similar disturbances are present in asymptomatic individuals at risk for the disease. METHODS: We administered executive, semantic, verb-production, and syntactic tasks to sporadic PD patients, genetic PD patients with PARK2 (parkin) or LRRK2 (dardarin) mutation, asymptomatic first-degree relatives of the latter with similar mutations, and socio-demographically matched controls...
February 2017: Journal of the International Neuropsychological Society: JINS
https://www.readbyqxmd.com/read/28178523/the-mitochondrial-rhomboid-protease-parl-is-regulated-by-pdk2-to-integrate-mitochondrial-quality-control-and-metabolism
#20
Guang Shi, G Angus McQuibban
Mitochondrial quality control (MQC) systems are essential for mitochondrial health and normal cellular function. Dysfunction of MQC is emerging as a central mechanism for the pathogenesis of various diseases, including Parkinson's disease. The mammalian mitochondrial rhomboid protease, PARL, has been proposed as a regulator of PINK1/PARKIN-mediated mitophagy, which is an essential component of MQC. PARL undergoes an N-terminal autocatalytic cleavage (β cleavage), which is required for efficient mitophagy...
February 7, 2017: Cell Reports
keyword
keyword
118201
1
2
Fetch more papers »
Fetching more papers... Fetching...
Read by QxMD. Sign in or create an account to discover new knowledge that matter to you.
Remove bar
Read by QxMD icon Read
×

Search Tips

Use Boolean operators: AND/OR

diabetic AND foot
diabetes OR diabetic

Exclude a word using the 'minus' sign

Virchow -triad

Use Parentheses

water AND (cup OR glass)

Add an asterisk (*) at end of a word to include word stems

Neuro* will search for Neurology, Neuroscientist, Neurological, and so on

Use quotes to search for an exact phrase

"primary prevention of cancer"
(heart or cardiac or cardio*) AND arrest -"American Heart Association"