Read by QxMD icon Read

Light sheet microscopy

Yicong Wu, Abhishek Kumar, Corey Smith, Evan Ardiel, Panagiotis Chandris, Ryan Christensen, Ivan Rey-Suarez, Min Guo, Harshad D Vishwasrao, Jiji Chen, Jianyong Tang, Arpita Upadhyaya, Patrick J La Riviere, Hari Shroff
Light-sheet fluorescence microscopy (LSFM) enables high-speed, high-resolution, and gentle imaging of live specimens over extended periods. Here we describe a technique that improves the spatiotemporal resolution and collection efficiency of LSFM without modifying the underlying microscope. By imaging samples on reflective coverslips, we enable simultaneous collection of four complementary views in 250 ms, doubling speed and improving information content relative to symmetric dual-view LSFM. We also report a modified deconvolution algorithm that removes associated epifluorescence contamination and fuses all views for resolution recovery...
November 13, 2017: Nature Communications
Johannes Stegmaier, Ralf Mikut
Many automatically analyzable scientific questions are well-posed and a variety of information about expected outcomes is available a priori. Although often neglected, this prior knowledge can be systematically exploited to make automated analysis operations sensitive to a desired phenomenon or to evaluate extracted content with respect to this prior knowledge. For instance, the performance of processing operators can be greatly enhanced by a more focused detection strategy and by direct information about the ambiguity inherent in the extracted data...
2017: PloS One
Chen Wu, Henry Le, Shihao Ran, Manmohan Singh, Irina V Larina, David Mayerich, Mary E Dickinson, Kirill V Larin
Several optical imaging techniques have been applied for high-resolution embryonic imaging using different contrast mechanisms, each with their own benefits and limitations. In this study, we imaged the same E9.5 mouse embryo with rotational imaging optical coherence tomography (RI-OCT) and selective plane illumination microscopy (SPIM). RI-OCT overcomes optical penetration limits of traditional OCT imaging that prohibit full-body imaging of mouse embryos at later stages by imaging the samples from multiple angles...
October 1, 2017: Biomedical Optics Express
Marco Marcello, Rosalie Richards, David Mason, Violaine Sée
Three-dimensional cellular assays are becoming increasingly popular as a fundamental tool to bridge the gap between tissue culture systems and in vivo tissue. In particular, spheroids are recognised today as a necessary intermediate model between testing in monolayer cultures and testing in animals. This chapter describes a straightforward protocol, from sample preparation to image acquisition and initial post-processing, based on one of most widely used commercial light-sheet fluorescence microscopy platform, the Zeiss Lightsheet Z...
2017: Advances in Experimental Medicine and Biology
David Godefroy, Chloé Dominici, Hélène Hardin-Pouzet, Youssef Anouar, Stéphane Melik-Parsadaniantz, William Rostene, Annabelle Reaux-Le Goazigo
Over the years, advances in immunohistochemistry techniques have been a critical step in detecting and mapping neuromodulatory substances in the central nervous system. The better quality and specificity of primary antibodies, new staining procedures and the spectacular development of imaging technologies have allowed such progress. Very recently, new methods permitting tissue transparency have been successfully used on brain tissues. In this work, we combined whole-mount immunostaining for tyrosine hydroxylase (TH), oxytocin (OXT) and arginine vasopressin (AVP), with iDISCO+ clearing method, light-sheet microscopy and semi automated counting of 3D-labelled neurons to obtain a 3D distribution of these neuronal populations in a 5-day postnatal (P5) mouse brain...
October 16, 2017: Journal of Neuroendocrinology
Chris Hawes, Pengwei Wang, Verena Kriechbaumer
The ER is a highly dynamic network of tubules and membrane sheets. Hence imaging this organelle in its native and mobile state is of great importance. Here we describe methods of labeling the native ER using fluorescent proteins and lipid dyes as well as methods for immunolabeling on plant tissue.
2018: Methods in Molecular Biology
Guoqing Zhao, Myungkwan Song, Hee-Suk Chung, Soo Min Kim, Sang-Geul Lee, Jong-Seong Bae, Tae-Sung Bae, Donghwan Kim, Gun-Hwan Lee, Seung Zeon Han, Hae-Seok Lee, Eun-Ae Choi, Jungheum Yun
The development of highly efficient flexible transparent electrodes (FTEs) supported on polymer substrates is of great importance to the realization of portable and bendable photovoltaic devices. Highly conductive, low-cost Cu has attracted attention as a promising alternative for replacing expensive indium tin oxide (ITO) and Ag. However, highly efficient, Cu-based FTEs are currently unavailable because of the absence of an efficient means of attaining an atomically thin, completely continuous Cu film that simultaneously exhibits enhanced optical transmittance and electrical conductivity...
November 8, 2017: ACS Applied Materials & Interfaces
Tali Mass, Jeana L Drake, John M Heddleston, Paul G Falkowski
Calcium carbonate platforms produced by reef-building stony corals over geologic time are pervasive features around the world [1]; however, the mechanism by which these organisms produce the mineral is poorly understood (see review by [2]). It is generally assumed that stony corals precipitate calcium carbonate extracellularly as aragonite in a calcifying medium between the calicoblastic ectoderm and pre-existing skeleton, separated from the overlying seawater [2]. The calicoblastic ectoderm produces extracellular matrix (ECM) proteins, secreted to the calcifying medium [3-6], which appear to provide the nucleation, alteration, elongation, and inhibition mechanisms of the biomineral [7] and remain occluded and preserved in the skeleton [8-10]...
October 23, 2017: Current Biology: CB
Per Niklas Hedde, Leonel Malacrida, Siavash Ahrar, Albert Siryaporn, Enrico Gratton
Previously described selective plane illumination microscopy techniques typically offset ease of use and sample handling for maximum imaging performance or vice versa. Also, to reduce cost and complexity while maximizing flexibility, it is highly desirable to implement light sheet microscopy such that it can be added to a standard research microscope instead of setting up a dedicated system. We devised a new approach termed sideSPIM that provides uncompromised imaging performance and easy sample handling while, at the same time, offering new applications of plane illumination towards fluidics and high throughput 3D imaging of multiple specimen...
September 1, 2017: Biomedical Optics Express
Manuel Alonso Y Adell, Simona M Migliano, Srigokul Upadhyayula, Yury S Bykov, Simon Sprenger, Mehrshad Pakdel, Georg F Vogel, Gloria Jih, Wesley Skillern, Reza Behrouzi, Markus Babst, Oliver Schmidt, Michael W Hess, John Ag Briggs, Tomas Kirchhausen, David Teis
The ESCRT machinery mediates reverse membrane scission. By quantitative fluorescence lattice light-sheet microscopy, we have shown that ESCRT-III subunits polymerize rapidly on yeast endosomes, together with the recruitment of at least two Vps4 hexamers. During their 3-45 s lifetimes, the ESCRT-III assemblies accumulated 75-200 Snf7 and 15-50 Vps24 molecules. Productive budding events required at least two additional Vps4 hexamers. Membrane budding was associated with continuous, stochastic exchange of Vps4 and ESCRT-III components, rather than steady growth of fixed assemblies, and depended on Vps4 ATPase activity...
October 11, 2017: ELife
Veronica Akle, Nathalie Agudelo-Dueñas, Maria A Molina-Rodriguez, Laurel Brianne Kartchner, Annette Marie Ruth, John M González, Manu Forero-Shelton
Chagas disease is a parasitic infection caused by Trypanosoma cruzi, whose motility is not only important for localization, but also for cellular binding and invasion. Current animal models for the study of T. cruzi allow limited observation of parasites in vivo, representing a challenge for understanding parasite behavior during the initial stages of infection in humans. This protozoan has a flagellar stage in both vector and mammalian hosts, but there are no studies describing its motility in vivo.The objective of this project was to establish a live vertebrate zebrafish model to evaluate T...
September 30, 2017: Journal of Visualized Experiments: JoVE
Jitendra Subhash Rane, Prasenjit Bhaumik, Dulal Panda
The pathological aggregation of tau is a common feature of most of the neuronal disorders including frontotemporal dementia, Parkinson's disease, and Alzheimer's disease. The inhibition of tau aggregation is considered to be one of the important strategies for treating these neurodegenerative diseases. Curcumin, a natural polyphenolic molecule, has been reported to have neuroprotective ability. In this work, curcumin was found to bind to adult tau and fetal tau with a dissociation constant of 3.3±0.4 and 8±1 μM, respectively...
2017: Journal of Alzheimer's Disease: JAD
Mustafa Mir, Armando Reimer, Jenna E Haines, Xiao-Yong Li, Michael Stadler, Hernan Garcia, Michael B Eisen, Xavier Darzacq
Morphogen gradients direct the spatial patterning of developing embryos; however, the mechanisms by which these gradients are interpreted remain elusive. Here we used lattice light-sheet microscopy to perform in vivo single-molecule imaging in early Drosophila melanogaster embryos of the transcription factor Bicoid that forms a gradient and initiates patterning along the anteroposterior axis. In contrast to canonical models, we observed that Bicoid binds to DNA with a rapid off rate throughout the embryo such that its average occupancy at target loci is on-rate-dependent...
September 1, 2017: Genes & Development
Mette Ø Filsø, Iman Chaaban, Amer Al Shehabi, Jørgen Skibsted, Nina Lock
Two different two-dimensional thiostannates (SnS) were synthesized using tris(2-aminoethyl)amine (tren) or 1-(2-aminoethyl)piperidine (1AEP) as structure-directing agents. Both structures consist of negatively charged thiostannate layers with charge stabilizing cations sandwiched in-between. The fundamental building units are Sn3S4 broken-cube clusters connected by double sulfur bridges to form polymeric (Sn3S7(2-))n honeycomb hexagonal layers. The compounds are members of the R-SnS-1 family of structures, where R indicates the type of cation...
October 1, 2017: Acta Crystallographica Section B, Structural Science, Crystal Engineering and Materials
Ahmad Shaabani, Ronak Afshari
Herein, we report the direct synthesis of carboxamide-functionalized graphene oxide (carboxamide-f-GO) for the development of new nanocatalysts, with highly dispersed particles, through covalent functionalization with a facile and direct strategy. This surface functionalization was carried out through a one-pot sequential four-component Ugi reaction. Subsequently, the Ugi-ligand decorated on the surface of the graphene oxide sheets coordinated with copper nanoparticles (Cu NPs) and finally covered with magnetic nanoparticles...
January 15, 2018: Journal of Colloid and Interface Science
Lillian K Fritz-Laylin, Megan Riel-Mehan, Bi-Chang Chen, Samuel J Lord, Thomas D Goddard, Thomas E Ferrin, Susan M Nicholson-Dykstra, Henry Higgs, Graham T Johnson, Eric Betzig, R Dyche Mullins
Leukocytes and other amoeboid cells change shape as they move, forming highly dynamic, actin-filled pseudopods. Although we understand much about the architecture and dynamics of thin lamellipodia made by slow-moving cells on flat surfaces, conventional light microscopy lacks the spatial and temporal resolution required to track complex pseudopods of cells moving in three dimensions. We therefore employed lattice light sheet microscopy to perform three-dimensional, time-lapse imaging of neutrophil-like HL-60 cells crawling through collagen matrices...
September 26, 2017: ELife
Kevin M Dean, Philippe Roudot, Erik S Welf, Theresa Pohlkamp, Gerard Garrelts, Joachim Herz, Reto Fiolka
In fluorescence microscopy, the serial acquisition of 2D images to form a 3D volume limits the maximum imaging speed. This is particularly evident when imaging adherent cells in a light-sheet fluorescence microscopy format, as their elongated morphologies require ~200 image planes per image volume. Here, by illuminating the specimen with three light-sheets, each independently detected, we present a light-efficient, crosstalk free, and volumetrically parallelized 3D microscopy technique that is optimized for high-speed (up to 14 Hz) subcellular (300 nm lateral, 600 nm axial resolution) imaging of adherent cells...
February 20, 2017: Optica
Roberto Cerbino, Pietro Cicuta
Differential dynamic microscopy (DDM) is a technique that exploits optical microscopy to obtain local, multi-scale quantitative information about dynamic samples, in most cases without user intervention. It is proving extremely useful in understanding dynamics in liquid suspensions, soft materials, cells, and tissues. In DDM, image sequences are analyzed via a combination of image differences and spatial Fourier transforms to obtain information equivalent to that obtained by means of light scattering techniques...
September 21, 2017: Journal of Chemical Physics
Duncan P Ryan, Elizabeth A Gould, Gregory J Seedorf, Omid Masihzadeh, Steven H Abman, Sukumar Vijayaraghavan, Wendy B Macklin, Diego Restrepo, Douglas P Shepherd
Optical tissue clearing has revolutionized researchers' ability to perform fluorescent measurements of molecules, cells, and structures within intact tissue. One common complication to all optically cleared tissue is a spatially heterogeneous refractive index, leading to light scattering and first-order defocus. We designed C-DSLM (cleared tissue digital scanned light-sheet microscopy) as a low-cost method intended to automatically generate in-focus images of cleared tissue. We demonstrate the flexibility and power of C-DSLM by quantifying fluorescent features in tissue from multiple animal models using refractive index matched and mismatched microscope objectives...
September 20, 2017: Nature Communications
Zhuang-Li Kang, Xiang Li, Hong-Ju He, Han-Jun Ma, Zhao-Jun Song
A comprehensive study was conducted to evaluate the structural changes of meat and protein of pork batters produced by chopping or beating process through the phase-contrast micrograph, laser light scattering analyzer, scanning electronic microscopy and Raman spectrometer. The results showed that the shattered myofibrilla fragments were shorter and particle-sizes were smaller in the raw batter produced by beating process than those in the chopping process. Compared with the raw and cooked batters produced by chopping process, modifications in amide I and amide III bands revealed a significant decrease of α-helix content and an increase of β-sheet, β-turn and random coils content in the beating process...
August 2017: Journal of Food Science and Technology
Fetch more papers »
Fetching more papers... Fetching...
Read by QxMD. Sign in or create an account to discover new knowledge that matter to you.
Remove bar
Read by QxMD icon Read

Search Tips

Use Boolean operators: AND/OR

diabetic AND foot
diabetes OR diabetic

Exclude a word using the 'minus' sign

Virchow -triad

Use Parentheses

water AND (cup OR glass)

Add an asterisk (*) at end of a word to include word stems

Neuro* will search for Neurology, Neuroscientist, Neurological, and so on

Use quotes to search for an exact phrase

"primary prevention of cancer"
(heart or cardiac or cardio*) AND arrest -"American Heart Association"