keyword
MENU ▼
Read by QxMD icon Read
search

Ultra large scale system

keyword
https://www.readbyqxmd.com/read/28282850/fully-printed-flexible-single-chip-rfid-tag-with-light-detection-capabilities
#1
Aniello Falco, Jose F Salmerón, Florin C Loghin, Paolo Lugli, Almudena Rivadeneyra
A printed passive radiofrequency identification (RFID) tag in the ultra-high frequency band for light and temperature monitoring is presented. The whole tag has been manufactured by printing techniques on a flexible substrate. Antenna and interconnects are realized with silver nanoparticles via inkjet printing. A sprayed photodetector performs the light monitoring, whereas temperature measurement comes from an in-built sensor in the silicon RFID chip. One of the advantages of this system is the digital read-out and transmission of the sensors information on the RFID tag that ensures reliability...
March 8, 2017: Sensors
https://www.readbyqxmd.com/read/28269558/a-110-nw-in-channel-sigma-delta-converter-for-large-scale-neural-recording-implants
#2
M Rezaei, E Maghsoudloo, M Sawan, B Gosselin
Advancement in wireless and microsystems technology have ushered in new devices that can directly interface with the central nervous system for stimulating and/or monitoring neural circuitry. In this paper, we present an ultra low-power sigma-delta analog-to-digital converter (ADC) intended for utilization into large-scale multi-channel neural recording implants. This proposed design, which provides a resolution of 9 bits using a one-bit oversampled ADC, presents several desirable features that allow for an in-channel ADC scheme, where one sigma-delta converter is provided for each channel, enabling development of scalable systems that can interface with different types of high-density neural microprobes...
August 2016: Conference Proceedings: Annual International Conference of the IEEE Engineering in Medicine and Biology Society
https://www.readbyqxmd.com/read/28227813/a-110-nw-in-channel-sigma-delta-converter-for-large-scale-neural-recording-implants
#3
M Rezaei, E Maghsoudloo, M Sawan, B Gosselin, M Rezaei, E Maghsoudloo, M Sawan, B Gosselin, M Rezaei, E Maghsoudloo, M Sawan, B Gosselin
Advancement in wireless and microsystems technology have ushered in new devices that can directly interface with the central nervous system for stimulating and/or monitoring neural circuitry. In this paper, we present an ultra low-power sigma-delta analog-to-digital converter (ADC) intended for utilization into large-scale multi-channel neural recording implants. This proposed design, which provides a resolution of 9 bits using a one-bit oversampled ADC, presents several desirable features that allow for an in-channel ADC scheme, where one sigma-delta converter is provided for each channel, enabling development of scalable systems that can interface with different types of high-density neural microprobes...
August 2016: Conference Proceedings: Annual International Conference of the IEEE Engineering in Medicine and Biology Society
https://www.readbyqxmd.com/read/28168253/electrochemical-micro-nano-machining-principles-and-practices
#4
REVIEW
Dongping Zhan, Lianhuan Han, Jie Zhang, Quanfeng He, Zhao-Wu Tian, Zhong-Qun Tian
Micro/nano-machining (MNM) is becoming the cutting-edge of high-tech manufacturing because of the increasing industrial demand for supersmooth surfaces and functional three-dimensional micro/nano-structures (3D-MNS) in ultra-large scale integrated circuits, microelectromechanical systems, miniaturized total analysis systems, precision optics, and so on. Taking advantage of no tool wear, no surface stress, environmental friendliness, simple operation, and low cost, electrochemical micro/nano-machining (EC-MNM) has an irreplaceable role in MNM...
February 7, 2017: Chemical Society Reviews
https://www.readbyqxmd.com/read/28157956/tdm-interrogation-of-intensity-modulated-usfbgs-network-based-on-multichannel-lasers
#5
Jalal Rohollahnejad, Li Xia, Rui Cheng, Yanli Ran, Udaya Rahubadde, Jiaao Zhou, Lin Zhu
We report a large-scale multi-channel fiber sensing network, where ultra-short FBGs (USFBGs) instead of conventional narrow-band ultra-weak FBGs are used as the sensors. In the time division multiplexing scheme of the network, each grating response is resolved as three adjacent discrete peaks. The central wavelengths of USFBGs are tracked with the differential detection, which is achieved by calculating the peak-to-peak ratio of two maximum peaks. Compared with previous large-scale hybrid multiplexing sensing networks (e...
January 23, 2017: Optics Express
https://www.readbyqxmd.com/read/27881881/spintronic-nanodevices-for-bioinspired-computing
#6
Julie Grollier, Damien Querlioz, Mark D Stiles
Bioinspired hardware holds the promise of low-energy, intelligent, and highly adaptable computing systems. Applications span from automatic classification for big data management, through unmanned vehicle control, to control for biomedical prosthesis. However, one of the major challenges of fabricating bioinspired hardware is building ultra-high-density networks out of complex processing units interlinked by tunable connections. Nanometer-scale devices exploiting spin electronics (or spintronics) can be a key technology in this context...
October 2016: Proceedings of the IEEE
https://www.readbyqxmd.com/read/27868222/adaptive-partitioning-by-local-density-peaks-an-efficient-density-based-clustering-algorithm-for-analyzing-molecular-dynamics-trajectories
#7
Song Liu, Lizhe Zhu, Fu Kit Sheong, Wei Wang, Xuhui Huang
We present an efficient density-based adaptive-resolution clustering method APLoD for analyzing large-scale molecular dynamics (MD) trajectories. APLoD performs the k-nearest-neighbors search to estimate the density of MD conformations in a local fashion, which can group MD conformations in the same high-density region into a cluster. APLoD greatly improves the popular density peaks algorithm by reducing the running time and the memory usage by 2-3 orders of magnitude for systems ranging from alanine dipeptide to a 370-residue Maltose-binding protein...
January 30, 2017: Journal of Computational Chemistry
https://www.readbyqxmd.com/read/27807979/low-voltage-continuous-electrospinning-patterning
#8
Xia Li, Zhaoying Li, Liyun Wang, Guokun Ma, Fanlong Meng, Robyn H Pritchard, Elisabeth L Gill, Ye Liu, Yan Yan Shery Huang
Electrospinning is a versatile technique for the construction of microfibrous and nanofibrous structures with considerable potential in applications ranging from textile manufacturing to tissue engineering scaffolds. In the simplest form, electrospinning uses a high voltage of tens of thousands volts to draw out ultrafine polymer fibers over a large distance. However, the high voltage limits the flexible combination of material selection, deposition substrate, and control of patterns. Prior studies show that by performing electrospinning with a well-defined "near-field" condition, the operation voltage can be decreased to the kilovolt range, and further enable more precise patterning of fibril structures on a planar surface...
November 30, 2016: ACS Applied Materials & Interfaces
https://www.readbyqxmd.com/read/27774377/shifting-the-sun-solar-spectral-conversion-and-extrinsic-sensitization-in-natural-and-artificial-photosynthesis
#9
Lothar Wondraczek, Esa Tyystjärvi, Jorge Méndez-Ramos, Frank A Müller, Qinyuan Zhang
Solar energy harvesting is largely limited by the spectral sensitivity of the employed energy conversion system, where usually large parts of the solar spectrum do not contribute to the harvesting scheme, and where, of the contributing fraction, the full potential of each photon is not efficiently used in the generation of electrical or chemical energy. Extrinsic sensitization through photoluminescent spectral conversion has been proposed as a route to at least partially overcome this problem. Here, we discuss this approach in the emerging context of photochemical energy harvesting and storage through natural or artificial photosynthesis...
December 2015: Advanced Science (Weinheim, Baden-Wurttemberg, Germany)
https://www.readbyqxmd.com/read/27743356/high-throughput-analysis-of-the-igg-n-glycome-by-uplc-flr
#10
Maja Pučić-Baković
As biological and clinical relevance of glycosylation is becoming more apparent, interest in large scale studies of the glycome is growing. Glycans attached to immunoglobulin G (IgG) were shown to be essential for its function and IgG glycosylation was shown to change with various processes, making IgG one of the most studied glycoproteins. Many approaches including liquid chromatography, capillary gel electrophoresis, and mass spectrometry were developed to study IgG glycosylation. Generation of high-quality glycomics data in a high-throughput fashion requires reproducible and robust sample preparation and accurate and reliable quantitative analysis...
2017: Methods in Molecular Biology
https://www.readbyqxmd.com/read/27732887/attention-reorganizes-connectivity-across-networks-in-a-frequency-specific-manner
#11
Soyoung Kwon, Masataka Watanabe, Elvira Fischer, Andreas Bartels
Attention allows our brain to focus its limited resources on a given task. It does so by selective modulation of neural activity and of functional connectivity (FC) across brain-wide networks. While there is extensive literature on activity changes, surprisingly few studies examined brain-wide FC modulations that can be cleanly attributed to attention compared to matched visual processing. In contrast to prior approaches, we used an ultra-long trial design that avoided transients from trial onsets, included slow fluctuations (<0...
January 1, 2017: NeuroImage
https://www.readbyqxmd.com/read/27729529/fast-fmri-can-detect-oscillatory-neural-activity-in-humans
#12
Laura D Lewis, Kawin Setsompop, Bruce R Rosen, Jonathan R Polimeni
Oscillatory neural dynamics play an important role in the coordination of large-scale brain networks. High-level cognitive processes depend on dynamics evolving over hundreds of milliseconds, so measuring neural activity in this frequency range is important for cognitive neuroscience. However, current noninvasive neuroimaging methods are not able to precisely localize oscillatory neural activity above 0.2 Hz. Electroencephalography and magnetoencephalography have limited spatial resolution, whereas fMRI has limited temporal resolution because it measures vascular responses rather than directly recording neural activity...
October 25, 2016: Proceedings of the National Academy of Sciences of the United States of America
https://www.readbyqxmd.com/read/27725974/ultra-thin-graphene-polymer-heterostructure-membranes
#13
C N Berger, M Dirschka, A Vijayaraghavan
The fabrication of arrays of ultra-thin conductive membranes remains a major challenge in realising large-scale micro/nano-electromechanical systems (MEMS/NEMS), since processing-stress and stiction issues limit the precision and yield in assembling suspended structures. We present the fabrication and mechanical characterisation of a suspended graphene-polymer heterostructure membrane that aims to tackle the prevailing challenge of constructing high yield membranes with minimal compromise to the mechanical properties of graphene...
October 11, 2016: Nanoscale
https://www.readbyqxmd.com/read/27607990/thulium-doped-fiber-chirped-pulse-amplification-system-with-2-gw-of-peak-power
#14
C Gaida, M Gebhardt, F Stutzki, C Jauregui, J Limpert, A Tünnermann
Thulium-doped fibers with ultra large mode-field areas offer new opportunities for the power scaling of mid-IR ultrashort-pulse laser sources. Here, we present a laser system delivering a pulse-peak power of 2 GW and a nearly transform-limited pulse duration of 200 fs in combination with 28.7 W of average power. This performance level has been achieved by optimizing the pulse shape, reducing the overlap with atmospheric absorption lines, and incorporating a climate chamber to reduce the humidity of the atmospheric environment...
September 1, 2016: Optics Letters
https://www.readbyqxmd.com/read/27529563/ternary-porous-sulfur-dual-carbon-architectures-for-lithium-sulfur-batteries-obtained-continuously-and-on-a-large-scale-via-an-industry-oriented-spray-pyrolysis-sublimation-method
#15
Xin Liang, Mohammad Rejaul Kaiser, Konstantin Konstantinov, Richard Tandiono, Zhaoxiang Wang, Chunhua Chen, Hua-Kun Liu, Shi-Xue Dou, Jiazhao Wang
Ternary composites with porous sulfur/dual-carbon architectures have been synthesized by a single-step spray-pyrolysis/sublimation technique, which is an industry-oriented method that features continuous fabrication of products with highly developed porous structures without the need for any further treatments. A double suspension of commercial sulfur and carbon scaffolding particles was dispersed in ethanol/water solution and sprayed at 180 °C using a spray pyrolysis system. In the resultant composites, the sulfur particles were subjected to an ultrashort sublimation process, leading to the development of a highly porous surface, and were meanwhile coated with amorphous carbon, obtained through the pyrolysis of the ethanol, which acts as an adhesive interface to bind together the porous sulfur with the scaffolding carbon particles, to form a ternary composite architecture...
September 28, 2016: ACS Applied Materials & Interfaces
https://www.readbyqxmd.com/read/27483895/nano-nucleation-characteristic-of-cu-ag-alloy-directly-electrodeposited-on-w-diffusion-barrier-for-microelectronic-device-interconnect
#16
Kang O Kim, Sunjung Kim
Cu-Ag alloy interconnect is promising for ultra-large-scale integration (ULSI) microelectronic system of which device dimension keeps shrinking. In this study, seedless electrodeposition of Cu-Ag alloy directly on W diffusion barrier as interconnect technology is presented in respect of nano-nucleation control. Chemical equilibrium state of electrolyte was fundamentally investigated according to the pH of electrolyte because direct nano-nucleation of Cu-Ag alloy on W surface is challenging. Chelation behavior of Cu2+ and Ag+ ions with citrate (Cit) and ammonia ligands was dependent on the pH of electrolyte...
May 2016: Journal of Nanoscience and Nanotechnology
https://www.readbyqxmd.com/read/27350035/structural-lubricity-under-ambient-conditions
#17
Ebru Cihan, Semran İpek, Engin Durgun, Mehmet Z Baykara
Despite its fundamental importance, physical mechanisms that govern friction are poorly understood. While a state of ultra-low friction, termed structural lubricity, is expected for any clean, atomically flat interface consisting of two different materials with incommensurate structures, some associated predictions could only be quantitatively confirmed under ultra-high vacuum (UHV) conditions so far. Here, we report structurally lubric sliding under ambient conditions at mesoscopic (∼4,000-130,000 nm(2)) interfaces formed by gold islands on graphite...
2016: Nature Communications
https://www.readbyqxmd.com/read/27175936/safe-and-durable-high-temperature-lithium-sulfur-batteries-via-molecular-layer-deposited-coating
#18
Xia Li, Andrew Lushington, Qian Sun, Wei Xiao, Jian Liu, Biqiong Wang, Yifan Ye, Kaiqi Nie, Yongfeng Hu, Qunfeng Xiao, Ruying Li, Jinghua Guo, Tsun-Kong Sham, Xueliang Sun
Lithium-sulfur (Li-S) battery is a promising high energy storage candidate in electric vehicles. However, the commonly employed ether based electrolyte does not enable to realize safe high-temperature Li-S batteries due to the low boiling and flash temperatures. Traditional carbonate based electrolyte obtains safe physical properties at high temperature but does not complete reversible electrochemical reaction for most Li-S batteries. Here we realize safe high temperature Li-S batteries on universal carbon-sulfur electrodes by molecular layer deposited (MLD) alucone coating...
June 8, 2016: Nano Letters
https://www.readbyqxmd.com/read/27142959/diffraction-limited-ultrabroadband-terahertz-spectroscopy
#19
M Baillergeau, K Maussang, T Nirrengarten, J Palomo, L H Li, E H Linfield, A G Davies, S Dhillon, J Tignon, J Mangeney
Diffraction is the ultimate limit at which details of objects can be resolved in conventional optical spectroscopy and imaging systems. In the THz spectral range, spectroscopy systems increasingly rely on ultra-broadband radiation (extending over more 5 octaves) making a great challenge to reach resolution limited by diffraction. Here, we propose an original easy-to-implement wavefront manipulation concept to achieve ultrabroadband THz spectroscopy system with diffraction-limited resolution. Applying this concept to a large-area photoconductive emitter, we demonstrate diffraction-limited ultra-broadband spectroscopy system up to 14...
2016: Scientific Reports
https://www.readbyqxmd.com/read/27058956/a-simple-and-novel-strategy-for-the-production-of-a-pan-specific-antiserum-against-elapid-snakes-of-asia
#20
Kavi Ratanabanangkoon, Kae Yi Tan, Sukanya Eursakun, Choo Hock Tan, Pavinee Simsiriwong, Teeraporn Pamornsakda, Witthawat Wiriyarat, Chaiya Klinpayom, Nget Hong Tan
Snakebite envenomation is a serious medical problem in many tropical developing countries and was considered by WHO as a neglected tropical disease. Antivenom (AV), the rational and most effective treatment modality, is either unaffordable and/or unavailable in many affected countries. Moreover, each AV is specific to only one (monospecific) or a few (polyspecific) snake venoms. This demands that each country to prepare AV against its local snake venoms, which is often not feasible. Preparation of a 'pan-specific' AV against many snakes over a wide geographical area in some countries/regions has not been possible...
April 2016: PLoS Neglected Tropical Diseases
keyword
keyword
117492
1
2
Fetch more papers »
Fetching more papers... Fetching...
Read by QxMD. Sign in or create an account to discover new knowledge that matter to you.
Remove bar
Read by QxMD icon Read
×

Search Tips

Use Boolean operators: AND/OR

diabetic AND foot
diabetes OR diabetic

Exclude a word using the 'minus' sign

Virchow -triad

Use Parentheses

water AND (cup OR glass)

Add an asterisk (*) at end of a word to include word stems

Neuro* will search for Neurology, Neuroscientist, Neurological, and so on

Use quotes to search for an exact phrase

"primary prevention of cancer"
(heart or cardiac or cardio*) AND arrest -"American Heart Association"