Read by QxMD icon Read

muscle stem cells

Payam Mohassel, A Reghan Foley, Carsten G Bönnemann
Skeletal muscle function relies on the myofibrillar apparatus inside myofibers as well as an intact extracellular matrix surrounding each myofiber. Muscle extracellular matrix (ECM) plays several roles including but not limited to force transmission, regulation of growth factors and inflammatory responses, and influencing muscle stem cell (i.e. satellite cell) proliferation and differentiation. In most myopathies, muscle ECM undergoes remodeling and fibrotic changes that may be maladaptive for normal muscle function and recovery...
June 19, 2018: Matrix Biology: Journal of the International Society for Matrix Biology
Bo Yuan, James A Broadbent, Jingning Huan, Huizhong Yang
Adipose-derived stem cells (ASCs) have been shown to enhance wound healing by human dermal fibroblasts; however, the interactions between ASCs and fibroblasts during injury remain unclear. Fibroblasts were treated with ASC-conditioned medium (ASC-CM) with and without transforming growth factor-β1 (TGF-β1) stimulation. Fibroblast proliferation, apoptosis, differentiation and expression of extracellular matrix genes and proteins, type I collagen, and type III collagen were measured. Also, wound-healing effect of ASC-CM was verified with in vivo animal study...
January 1, 2018: Journal of Burn Care & Research: Official Publication of the American Burn Association
Huijun Sun, Jie Lu, Bo Li, Shuqiang Chen, Xifeng Xiao, Jun Wang, Jingjing Wang, Xiaohong Wang
Severe uterine damage and infection lead to intrauterine adhesions, which result in hypomenorrhea, amenorrhea and infertility. Cell sheet engineering has shown great promise in clinical applications. Adipose-derived stem cells (ADSCs) are emerging as an alternative source of stem cells for cell-based therapies. In the present study, we investigated the feasibility of applying ADSCs as seed cells to form scaffold-free cell sheet. Data showed that ADSC sheets expressed higher levels of FGF, Col I, TGFβ and VEGF than ADSCs in suspension, while increased expression of this gene set was associated with stemness, including Nanog, Oct4 and Sox2...
June 20, 2018: Biology of Reproduction
Saadia Khilji, Munerah Hamed, Jihong Chen, Qiao Li
Molecular regulation of stem cell differentiation is exerted through both genetic and epigenetic determinants over distal regulatory or enhancer regions. Understanding the mechanistic action of active or poised enhancers is therefore imperative for control of stem cell differentiation. Based on the genome-wide co-occurrence of different epigenetic marks in committed proliferating myoblasts, we have previously generated a 14-state chromatin state model to profile rexinoid-responsive histone acetylation in early myoblast differentiation...
June 21, 2018: Epigenetics: Official Journal of the DNA Methylation Society
Lukas Cyganek, Malte Tiburcy, Karolina Sekeres, Kathleen Gerstenberg, Hanibal Bohnenberger, Christof Lenz, Sarah Henze, Michael Stauske, Gabriela Salinas, Wolfram-Hubertus Zimmermann, Gerd Hasenfuss, Kaomei Guan
Generation of homogeneous populations of subtype-specific cardiomyocytes (CMs) derived from human induced pluripotent stem cells (iPSCs) and their comprehensive phenotyping is crucial for a better understanding of the subtype-related disease mechanisms and as tools for the development of chamber-specific drugs. The goals of this study were to apply a simple and efficient method for differentiation of iPSCs into defined functional CM subtypes in feeder-free conditions and to obtain a comprehensive understanding of the molecular, cell biological, and functional properties of atrial and ventricular iPSC-CMs on both the single-cell and engineered heart muscle (EHM) level...
June 21, 2018: JCI Insight
Elisabeth A Kappos, Patricia Baenziger-Sieber, Mathias Tremp, Patricia E Engels, Sarah Thommen, Lima Sprenger, Robyn M Benz, Dirk J Schaefer, Stefan Schaeren, Daniel Felix Kalbermatten
BACKGROUND: The aim was to evaluate the regenerative effect of epineural injection of rat ASCs (rASCs) in three different settings of acute and chronic compression in a rat sciatic nerve model. METHODS: Acute compression (60 s) with a vessel clamp over a distance of 1 mm (group 1) or 10 mm (group 2), as well as chronic compression with a permanent remaining, nonabsorbable polymeric clip over a distance of 1 mm (group 3) was performed. Depending on the group, either 5 × 106 rASCs or the same volume (25 μl) of culture medium (CM) was injected with a 30G needle in the epineurium at the time of compression...
June 19, 2018: Brain and Behavior
Amanda M Brandt, Joanna M Kania, Madison L Gonzalez, Sally E Johnson
Hepatocyte growth factor (HGF) signals mediate mouse skeletal muscle stem cell, or satellite cell (SC), reentry into the cell cycle and myoblast proliferation. Because the athletic horse experiences exercise-induced muscle damage, the objective of the experiment was to determine the effect of HGF on equine SC (eqSC) bioactivity. Fresh isolates of adult eqSC were incubated with increasing concentrations of HGF and the initial time to DNA synthesis was measured. Media supplementation with HGF did not shorten (P > 0...
June 16, 2018: Journal of Animal Science
Rishi Raj Chhipa, Qiang Fan, Jane Anderson, Ranjithmenon Muraleedharan, Yan Huang, Georgianne Ciraolo, Xiaoting Chen, Ronald Waclaw, Lionel M Chow, Zaza Khuchua, Matthew Kofron, Matthew T Weirauch, Ady Kendler, Christopher McPherson, Nancy Ratner, Ichiro Nakano, Nupur Dasgupta, Kakajan Komurov, Biplab Dasgupta
Stress is integral to tumour evolution, and cancer cell survival depends on stress management. We found that cancer-associated stress chronically activates the bioenergetic sensor AMP kinase (AMPK) and, to survive, tumour cells hijack an AMPK-regulated stress response pathway conserved in normal cells. Analysis of The Cancer Genome Atlas data revealed that AMPK isoforms are highly expressed in the lethal human cancer glioblastoma (GBM). We show that AMPK inhibition reduces viability of patient-derived GBM stem cells (GSCs) and tumours...
June 18, 2018: Nature Cell Biology
Michael Sobel, Shinsuke Kikuchi, Lihua Chen, Gale L Tang, Tom N Wight, Richard D Kenagy
OBJECTIVE: When an autogenous vein is harvested and used for arterial bypass, it suffers physical and biologic injuries that may set in motion the cellular processes that lead to wall thickening, fibrosis, stenosis, and ultimately graft failure. Whereas the injurious effects of surgical preparation of the vein conduit have been extensively studied, little is known about the influence of the clinical environment of the donor leg from which the vein is obtained. METHODS: We studied the cellular responses of fresh saphenous vein samples obtained before implantation in 46 patients undergoing elective lower extremity bypass surgery...
June 15, 2018: Journal of Vascular Surgery
Eun Ju Lee, Joo Hyun Nam, Inho Choi
Fibromodulin (FMOD) is a proteoglycan present in extracellular matrix (ECM). Based on our previous findings that FMOD controls myoblast differentiation by regulating the gene expressions of collagen type I alpha 1 (COL1α1) and integral membrane protein 2 A (Itm2a), we undertook this study to investigate relationships between FMOD and calcium channels and to understand further the mechanism by which they control myoblast differentiation. Gene expression studies and luciferase reporter assays showed FMOD affected calcium channel gene expressions by regulating calcium channel gene promoter, and patch-clamp experiments showed both L- and T-type calcium channel currents were almost undetectable in FMOD knocked down cells...
June 15, 2018: Biochemical and Biophysical Research Communications
Chika Okimura, Yuichi Sakumura, Katsuya Shimabukuro, Yoshiaki Iwadate
Living cells sense the mechanical properties of their surrounding environment and respond accordingly. Crawling cells detect the rigidity of their substratum and migrate in certain directions. They can be classified into two categories: slow-moving and fast-moving cell types. Slow-moving cell types, such as fibroblasts, smooth muscle cells, mesenchymal stem cells, etc., move toward rigid areas on the substratum in response to a rigidity gradient. However, there is not much information on rigidity sensing in fast-moving cell types whose size is ∼10 μm and migration velocity is ∼10 μm/min...
May 2018: Physical Review. E
Wakana Izumi, Yuko Takuma, Ryo Ebihara, Wataru Mizunoya, Ryuichi Tatsumi, Mako Nakamura
Myogenesis is precisely proceeded by myogenic regulatory factors. Myogenic stem cells are activated, proliferated and fused into a multinuclear myofiber. Pax7, paired box 7, one of the earliest markers during myogenesis. It has been reported that Pax7 regulates the muscle marker genes, Myf5 and MyoD toward differentiation. The possible roles of Pax7 in myogenic cells have been well researched. However, it has not yet been clarified if Pax7 itself is able to induce myogenic fate in nonmyogenic lineage cells...
June 13, 2018: Animal Science Journal, Nihon Chikusan Gakkaihō
Shuangshuang Wang, Siwang Hu, Jian Wang, Yahui Liu, Ruochi Zhao, Maoqing Tong, Hanbin Cui, Nan Wu, Xiaomin Chen
BACKGROUND: Arterial calcification is associated with cardiovascular disease as a complication of advanced atherosclerosis and is a significant contributor to cardiovascular morbidity and mortality. Osteoblastic differentiation of vascular smooth muscle cells (VSMCs) plays an important role in arterial calcification and is characterized by cellular necrosis, inflammation, and lipoprotein and phospholipid complexes, especially in atherosclerotic calcification. The conditioned medium from bone marrow-derived mesenchymal stem cells (MSC-CM) is well known as a rich source of autologous cytokines and is universally used for tissue regeneration in current clinical medicine...
June 13, 2018: Stem Cell Research & Therapy
Wei Ge, Shan-He Wang, Bing Sun, Yue-Lang Zhang, Wei Shen, Hasan Khatib, Xin Wang
The role of melatonin in promoting the yield of Cashmere goat wool has been demonstrated for decades though there remains a lack of knowledge regarding melatonin mediated hair follicle growth. Recent studies have demonstrated that long non-coding RNAs (lncRNAs) are widely transcribed in the genome and play ubiquitous roles in regulating biological processes. However, the role of lncRNAs in regulating melatonin mediated hair follicle growth remains unclear. In this study, we established an in vitro Cashmere goat secondary hair follicle culture system, and demonstrated that 500 ng/L melatonin exposure promoted hair follicle fiber growth...
June 12, 2018: Cell Cycle
Ann Rancourt, Sébastien S Dufresne, Guillaume St-Pierre, Julie-Christine Lévesque, Haruka Nakamura, Yodai Kikuchi, Masahiko S Satoh, Jérôme Frenette, Sachiko Sato
The muscle membrane, sarcolemma, must be firmly attached to the basal lamina. The failure of proper attachment results in muscle injury, which is the underlying cause of Duchenne muscular dystrophy (DMD), in which mutations in the dystrophin gene disrupts the firm adhesion. In patients with DMD, even moderate contraction causes damage, leading to progressive muscle degeneration. The damaged muscles are repaired through myogenesis. Consequently, myogenesis is highly active in patients with DMD, and the repeated activation of myogenesis leads to the exhaustion of the myogenic stem cells...
June 12, 2018: FASEB Journal: Official Publication of the Federation of American Societies for Experimental Biology
Weishuai Lian, Xiaoxiao Hu, Long Pan, Shilong Han, Chuanwu Cao, Zhongzhi Jia, Maoquan Li
BACKGROUND: The goal of this study was to characterize the properties of human CD34+ cells in culture and investigate the feasibility and efficacy of CD34+ transplantation in a mouse model of limb ischemia and in patients with no-option critical limb ischemia. METHODS: Human CD34+ cells isolated from peripheral blood and grown in culture for up to four passages stained positively for the surface markers CD34 and CD133 and showed high viability after cryopreservation and recovery...
June 11, 2018: Journal of Clinical Laboratory Analysis
Laurène M André, C Rosanne M Ausems, Derick G Wansink, Bé Wieringa
Myotonic dystrophy type 1 (DM1) and 2 (DM2) are autosomal dominant degenerative neuromuscular disorders characterized by progressive skeletal muscle weakness, atrophy, and myotonia with progeroid features. Although both DM1 and DM2 are characterized by skeletal muscle dysfunction and also share other clinical features, the diseases differ in the muscle groups that are affected. In DM1, distal muscles are mainly affected, whereas in DM2 problems are mostly found in proximal muscles. In addition, manifestation in DM1 is generally more severe, with possible congenital or childhood-onset of disease and prominent CNS involvement...
2018: Frontiers in Neurology
Fang Wang, Maeda Yasuko, Vladimir Zachar, Tahera Ansari, Jeppe Emmersen
This study explored the feasibility of constructing a tissue engineered muscle layer in the oesophagus using oesophageal acellular matrix (OAM) scaffolds and human aortic smooth muscle cells (hASMCs) or human adipose-derived stem cells (hASCs). The second objective was to investigate the effect of hypoxic preconditioning of seeding cells on cell viability and migration depth. Our results demonstrated that hASMCs and hASCs could attach and adhere to the decellularized OAM scaffold and survive and proliferate for at least 7 days depending on the growth conditions...
June 8, 2018: Biochemical and Biophysical Research Communications
Shigeki Takada, Masato Hojo, Noriyoshi Takebe, Kenji Tanigaki, Susumu Miyamoto
OBJECTIVE: Hemangioblastomas (HBs) are benign vascular tumors of the central nervous system and histologically contain abundant microvessels. Therefore, they clinically exhibit vascular malformation-like characteristics. It has been described that endothelial-to-mesenchymal transition (EndMT) contributes to the pathogenesis of cerebral cavernous malformations. However, it remains unknown whether EndMT contributes to the pathogenesis of central nervous system HBs. The aim of our study was to investigate whether EndMT occurs in central nervous system HBs...
June 7, 2018: World Neurosurgery
Eunhui Seo, Hwansu Kang, Oh-Kyung Lim, Hee-Sook Jun
Mature skeletal muscle cells cannot be expanded in culture systems. Therefore, it is difficult to construct an in vitro model for muscle diseases. To establish an efficient protocol for myogenic differentiation of human adipose tissue-derived stem cells (hADSCs), we investigated whether addition of IL-6 and/or myocyte-conditioned media (CM) to conventional differentiation media can shorten the differentiation period. hADSCs were differentiated to myocytes using the conventional protocol or modified with the addition of 25 pg/mL IL-6 and/or C2C12 CM (25% v / v )...
May 24, 2018: International Journal of Molecular Sciences
Fetch more papers »
Fetching more papers... Fetching...
Read by QxMD. Sign in or create an account to discover new knowledge that matter to you.
Remove bar
Read by QxMD icon Read

Search Tips

Use Boolean operators: AND/OR

diabetic AND foot
diabetes OR diabetic

Exclude a word using the 'minus' sign

Virchow -triad

Use Parentheses

water AND (cup OR glass)

Add an asterisk (*) at end of a word to include word stems

Neuro* will search for Neurology, Neuroscientist, Neurological, and so on

Use quotes to search for an exact phrase

"primary prevention of cancer"
(heart or cardiac or cardio*) AND arrest -"American Heart Association"