Read by QxMD icon Read

water splitting

Shashi Kant Shukla, Shubha Pandey, Siddharth Pandey
Ionic liquids (ILs) have been receiving much attention in many fields of analytical chemistry because of their various interesting properties which distinguish them from volatile organic compounds. They offer both directional and non-directional forces towards a solute molecule and therefore act as excellent solvents for a wide range of polar and non-polar compounds. Because of the presence of various possible interactions, ILs easily undergo biphasic separation with water and other less polar/non-polar organic solvents...
October 10, 2017: Journal of Chromatography. A
Wei Wen, Jin-Cheng Yao, Yi-Jie Gu, Tu-Lai Sun, He Tian, Qi-Lai Zhou, Jin-Ming Wu
In this work, a solution combustion followed by dissolution in hydrogen peroxide is adopted to achieve a precursor for decorating anatase TiO2 nanosheets along single-crystalline rutile TiO2 nanorods, which achieves balsam-pear-like core/shell nanorod arrays with enhanced photoelectrochemical water splitting. The enhanced photoelectrochemical performance is attributed to the novel nanoarchitecture, which can simultaneously offer a high surface area, enhanced light-harvesting, a rutile/anatase junction for charge carrier separation and a conductive pathway for charge carrier collection...
October 20, 2017: Nanotechnology
Shigeto Hirai, Shunsuke Yagi, Wei-Tin Chen, Fang-Cheng Chou, Noriyasu Okazaki, Tomoya Ohno, Hisao Suzuki, Takeshi Matsuda
The oxygen evolution reaction (OER) plays a key role in emerging energy conversion technologies such as rechargeable metal-air batteries, and direct solar water splitting. Herein, a remarkably low overpotential of ≈150 mV at 10 mA cm(-2)disk in alkaline solutions using one of the non-Fermi liquids, Hg2Ru2O7, is reported. Hg2Ru2O7 displays a rapid increase in current density and excellent durability as an OER catalyst. This outstanding catalytic performance is realized through the coexistence of localized d-bands with the metallic state that is unique to non-Fermi liquids...
October 2017: Advanced Science (Weinheim, Baden-Wurttemberg, Germany)
Elijah G Schnitzler, Nathan A Seifert, Ignes Kusuma, Wolfgang Jaeger
The structure and internal dynamics of p-toluic acid and its 1:1 complex with water were investigated in the gas phase using chirped-pulse and cavity-based Fourier transform microwave spectroscopy. One conformer and one isomer were identified for the monomer and monohydrate, respectively. In the monohydrate, water acts as both a hydrogen bond donor and acceptor, participating in a six-membered intermolecular ring with the carboxyl group. Both a- and b-type transitions were observed for the monomer; only a-type transitions were observed for the monohydrate...
October 19, 2017: Journal of Physical Chemistry. A
Gero Nootz, Silvia Matt, Andrey Kanaev, Kyle P Judd, Weilin Hou
The propagation of a laser beam through Rayleigh-Bénard (RB) turbulence is investigated experimentally and by way of numerical simulation. For the experimental part, a focused laser beam transversed a 5  m×0.5  m×0.5  m water filled tank lengthwise. The tank is heated from the bottom and cooled from the top to produce convective RB turbulence. The effect of the turbulence on the beam is recorded on the exit of the beam from the tank. From the centroid motion of the beam, the index of refraction structure constant Cn2 is determined...
August 1, 2017: Applied Optics
Carlo Andrea Rozzi, Filippo Troiani, Ivano Tavernelli
Phenomena involving electron transfer are ubiquitous in nature, photosynthesis and enzymes or protein activity being prominent examples. Their deep understanding thus represents a mandatory scientific goal. Moreover, controlling the separation of photogenerated charges is a crucial prerequisite in many applicative contexts, including quantum electronics, photo-electrochemical water splitting, photocatalytic dye degradation, and energy conversion. In particular, photoinduced charge separation is the pivotal step driving the storage of sun light into electrical or chemical energy...
October 19, 2017: Journal of Physics. Condensed Matter: An Institute of Physics Journal
Li Zhang, Guoguo Kong, Yaping Meng, Jinshu Tian, Lijie Zhang, Shaolong Wan, Jingdong Lin, Yong Wang
Photocatalytic CO₂ reduction into renewable hydrocarbon solar fuels is considered as a promising strategy to simultaneously address the global energy and environmental issues. This article focuses on the direct coupling of photocatalytic water splitting and thermo-catalytic hydrogenation of CO₂ in the conversion of CO₂-H₂O to fuels. Specifically, it was found that direct coupling of thermo- and photo-catalysis over Au-Ru/TiO₂ leads to 15 times higher activity (358 K, with ~99% CH₄ selectivity) in the conversion of CO₂-H₂O to fuels than that of photo-catalytic water splitting...
October 18, 2017: ChemSusChem
Aniruddha K Kulkarni, C S Praveen, Yogesh A Sethi, Rajendra P Panmand, Sudhir S Arbuj, Sonali D Naik, Anil V Ghule, Bharat B Kale
The synthesis of orthorhombic nitrogen-doped niobium oxide (Nb2O5-xNx) nanostructures was performed and a photocatalytic study carried out in their use in the conversion of toxic H2S and water into hydrogen under UV-Visible light. Nanostructured orthorhombic Nb2O5-xNx was synthesized by a simple solid-state combustion reaction (SSCR). The nanostructural features of Nb2O5-xNx were examined by FESEM and HRTEM, which showed they had a porous chain-like structure, with chains interlocked with each other and with nanoparticles sized less than 10 nm...
October 18, 2017: Dalton Transactions: An International Journal of Inorganic Chemistry
Ashenafi Mebratu Zewde, Frances Yu, Sunil Nayak, Christopher Tallarida, Allen B Reitz, Lynn G Kirby, Scott M Rawls
BACKGROUND: Planarians, like rodents, instinctively spend more time in dark versus light environments when given a choice. This behavioral phenomenon is called negative phototaxis, which may reflect defensive responding related to an anxiety-like phenotype. NEW METHOD: We propose a planarian light/dark test, designated PLDT, to predict anxiogenic- or anxiolytic-like effects. Experimentally, we placed a planarian at the midline of a Petri dish, containing test compound or water, that was split evenly into light and dark compartments and determined time spent in the light over 10min...
October 14, 2017: Journal of Neuroscience Methods
Peter van der Linde, Álvaro Moreno-Soto, Pablo Peñas-López, Javier Rodríguez-Rodríguez, Detlef Lohse, Han J G E Gardeniers, Devaraj van der Meer, David Fernandez Rivas
Control over the bubble growth rates forming on the electrodes of water-splitting cells or chemical reactors is critical towards the attainment of higher energy efficiencies within these devices. This study focuses on the diffusion-driven growth dynamics of a succession of H2 bubbles generated at a flat silicon electrode substrate. Controlled nucleation is achieved by means of a single nucleation site consisting of a hydropho- bic micropit etched within a micron-sized pillar. In our experimental configuration of constant-current electrolysis, we identify gas depletion from (i) previous bubbles in the succession, (ii) unwanted bubbles forming on the sidewalls and (iii) the mere presence of the circular cavity where the electrode is being held...
October 17, 2017: Langmuir: the ACS Journal of Surfaces and Colloids
Andrei Yu Kostritskii, Dmitry Alekseevich Tolmachev, Natalia Viacheslavovna Lukasheva, Andrey A Gurtovenko
A molecular-level insight into the interactions of phospholipid molecules with cellulose is crucial for the development of novel cellulose-based materials for wound dressing. Here we employ the state-of-the-art computer simulations to unlock for a first time the molecular mechanisms behind such interactions. To this end, we performed a series of atomic-scale molecular dynamics simulations of phospholipid bilayers on a crystalline cellulose support at various hydration levels of the bilayer leaflets next to the cellulose surface...
October 17, 2017: Langmuir: the ACS Journal of Surfaces and Colloids
Juan Jesús Velasco Vélez, Katarzyna Skorupska, Elias Frei, Yu-Cheng Huang, Chung Li Dong, Bing-Jian Su, Cheng-Jhih Hsu, Hung-Yu Chou, Jin-Ming Chen, Peter Strasser, Robert Schloegl, Axel Knop-Gericke, ChengHao Chuang
The electrodeposition nature of copper on a gold electrode in a 4.8 pH CuSO4 solution was inquired using X-ray absorption spectroscopy, electrochemical quartz crystal microbalance and thermal desorption spectroscopy techniques. Our results point out that the electrodeposition of copper prompts the formation of stable oxi-hydroxide species with a formal oxidation state Cu+ without the evidence of metallic copper formation (Cu0). Moreover, the subsequent anodic polarization of Cu2Oaq yields the formation of CuO, in the formal oxidation state Cu2+, which is dissolved at higher anodic potential...
October 17, 2017: Journal of Physical Chemistry. B
Antoine A Emery, Chris Wolverton
ABO3 perovskites are oxide materials that are used for a variety of applications such as solid oxide fuel cells, piezo-, ferro-electricity and water splitting. Due to their remarkable stability with respect to cation substitution, new compounds for such applications potentially await discovery. In this work, we present an exhaustive dataset of formation energies of 5,329 cubic and distorted perovskites that were calculated using first-principles density functional theory. In addition to formation energies, several additional properties such as oxidation states, band gap, oxygen vacancy formation energy, and thermodynamic stability with respect to all phases in the Open Quantum Materials Database are also made publicly available...
October 17, 2017: Scientific Data
Andre L M Freitas, Flavio L Souza
This work describes the design of a microwave-assisted method using hydrothermal conditions to fabricate pure and Sn-doped hematite photoelectrodes with varied synthesis time and additional thermal treatment under air and N2 atmosphere. The hematite photoelectrode formed under N2 atmosphere, with Sn deposited on its surface-which is represented by material synthesized at 4 h -exhibits the highest performance. Hence, Sn addition followed by high temperature annealing conducted in an oxygen-deficient atmosphere seems to create oxygen vacancies, and to prevent the segregation of dopant to form the SnO2 phase at the hematite crystal surface, reducing its energy and suppressing the grain growth...
October 17, 2017: Nanotechnology
Bo-Quan Li, Zi-Jing Xia, Bingsen Zhang, Cheng Tang, Hao-Fan Wang, Qiang Zhang
Water oxidation represents the core process of many sustainable energy systems, such as fuel cells, rechargeable metal-air batteries, and water splitting. Material surface defects with high-energy hanging bonds possess superb intrinsic reactivity, whose actual performance is limited by the dimension and conductivity of the electrocatalyst. Herein we propose a surface defect-rich perovskite electrocatalyst through a p-block metal regulation concept to achieve high performance for oxygen evolution. As a typical p-metal, Sn(4+) dissolves from the solid phase from model SnNiFe perovskite nanodots, resulting in abundant surface defects with superior water oxidation performance...
October 16, 2017: Nature Communications
Luis Rodriguez, Santiago Veiga
PURPOSE: The aim of the present research was 1) to compare the pacing strategies of different level open water swimmers during the 10km race of the FINA 2015 World Swimming Championships (WCH), and 2) to relate these pacing strategies to the race performance. METHODS: Final and intermediate split times as well as intermediate race positions from the 10-kilometer race participants (69 men and 51 women) were collected from the public domain and were divided into five groups (G1 to G5) depending on their finishing positions...
October 16, 2017: International Journal of Sports Physiology and Performance
Leila Alibabaei, Robert J Dillon, Caroline E Reilly, M Kyle Brennaman, Kyung-Ryang Wee, Seth L Marquard, John M Papanikolas, Thomas J Meyer
Visible-light-driven water splitting was investigated in a dye sensitized photoelectrosynthesis cell (DSPEC) based on a photoanode with a phosphonic acid-derivatized donor--acceptor (D--A) organic chromophore, 1, and the water oxidation catalyst [Ru(bda)(4-O(CH2)3P(O3H2)2-pyr)2], 2, (pyr = pyridine; bda = 2,2'-bipyridine-6,6'-dicarboxylate). The photoanode was prepared by using a layering strategy beginning with the organic dye anchored to an FTO|core/shell electrode, atomic layer deposition (ALD) of a thin layer (< 1 nm) of TiO2, and catalyst binding through phosphonate linkage to the TiO2 layer...
October 16, 2017: ACS Applied Materials & Interfaces
Laurie A King, Thomas R Hellstern, Joonsuk Park, Robert Sinclair, Thomas F Jaramillo
Developing materials, interfaces, and devices with improved stability remains one of the key challenges in the field of photoelectrochemical water splitting. As a barrier to corrosion, molybdenum disulfide is a particularly attractive protection layer for photocathodes due to its inherent stability in acid, the low permeability of its basal planes, and the excellent hydrogen evolution reaction (HER) activity the MoS2 edge. Here, we demonstrate a stable silicon photocathode containing a protecting layer consisting of molybdenum disulfide, molybdenum silicide, and silicon oxide which operates continuously for two months...
October 16, 2017: ACS Applied Materials & Interfaces
Peng Zhou, Yanyong Wang, Chao Xie, Chen Chen, Hanwen Liu, Ru Chen, Jia Huo, Shuangyin Wang
Water splitting is promising for energy storage and conversion, but the sluggish oxygen evolution reaction (OER) hinders its wide application. The search for efficient and low-cost electrocatalysts for oxygen evolution has been pursued owing to their significance for green energy generation and storage. Layered Double Hydroxide (LDH) based materials are promising for the OER to improve this weakness. However, the wide application of LDHs is limited by their electronic properties and active sites. Here we report a simple and promising method to improve the OER catalytic activity via an acid-base reaction, which resulted in an exfoliation process and multiple defects including Co, Fe and O vacancies...
October 16, 2017: Chemical Communications: Chem Comm
Francis Opoku, Krishna Kuben Govender, Cornelia Gertina Catharina Elizabeth van Sittert, Penny Poomani Govender
In the 21st century, the growing demand of global energy is one of the key challenges. The photocatalytic generation of hydrogen has attracted extensive attention to discuss the increasing global demand for sustainable and clean energy. However, hydrogen evolution reactions normally use the economically expensive rare noble metals and the processes remain a challenge. Herein, low-cost BiNbO4/MWO4(010) heterostructures are studied for the first time to check their suitability towards photocatalytic hydrogen production...
October 16, 2017: Physical Chemistry Chemical Physics: PCCP
Fetch more papers »
Fetching more papers... Fetching...
Read by QxMD. Sign in or create an account to discover new knowledge that matter to you.
Remove bar
Read by QxMD icon Read

Search Tips

Use Boolean operators: AND/OR

diabetic AND foot
diabetes OR diabetic

Exclude a word using the 'minus' sign

Virchow -triad

Use Parentheses

water AND (cup OR glass)

Add an asterisk (*) at end of a word to include word stems

Neuro* will search for Neurology, Neuroscientist, Neurological, and so on

Use quotes to search for an exact phrase

"primary prevention of cancer"
(heart or cardiac or cardio*) AND arrest -"American Heart Association"