Read by QxMD icon Read

Homeostatic plasticity

Christoph T Schanzenbächer, Sivakumar Sambandan, Julian D Langer, Erin M Schuman
Homeostatic scaling adjusts the strength of synaptic connections up or down in response to large changes in input. To identify the landscape of proteomic changes that contribute to opposing forms of homeostatic plasticity, we examined the plasticity-induced changes in the newly synthesized proteome. Cultured rat hippocampal neurons underwent homeostatic up-scaling or down-scaling. We used BONCAT (bio-orthogonal non-canonical amino acid tagging) to metabolically label, capture, and identify newly synthesized proteins, detecting and analyzing 5,940 newly synthesized proteins using mass spectrometry and label-free quantitation...
October 19, 2016: Neuron
Laiyuan Wang, Zhiyong Wang, Jinyi Lin, Jie Yang, Linghai Xie, Mingdong Yi, Wen Li, Haifeng Ling, Changjin Ou, Wei Huang
Most simulations of neuroplasticity in memristors, which are potentially used to develop artificial synapses, are confined to the basic biological Hebbian rules. However, the simplex rules potentially can induce excessive excitation/inhibition, even collapse of neural activities, because they neglect the properties of long-term homeostasis involved in the frameworks of realistic neural networks. Here, we develop organic CuPc-based memristors of which excitatory and inhibitory conductivities can implement both Hebbian rules and homeostatic plasticity, complementary to Hebbian patterns and conductive to the long-term homeostasis...
October 20, 2016: Scientific Reports
Idan Elbaz, David Zada, Adi Tovin, Tslil Braun, Tali Lerer-Goldshtein, Gordon Wang, Philippe Mourrain, Lior Appelbaum
Sleep is tightly regulated by the circadian clock and homeostatic mechanisms. Although the sleep/wake cycle is known to be associated with structural and physiological synaptic changes that benefit the brain, the function of sleep is still debated. The hypothalamic hypocretin/orexin (Hcrt) neurons regulate various functions including feeding, reward, sleep, and wake. Continuous imaging of single neuronal circuits in live animals is vital to understanding the role of sleep in regulating synaptic dynamics, and the transparency of the zebrafish model enables time-lapse imaging of single synapses during both day and night...
October 12, 2016: Molecular Neurobiology
David J Schulz, Brian J Lane
Plasticity of excitability can come in two general forms: changes in excitability that alter neuronal output (e.g. long-term potentiation of intrinsic excitability) or excitability changes that stabilize neuronal output (homeostatic plasticity). Here we discuss the latter form of plasticity in the context of the crustacean stomatogastric nervous system, and a second central pattern generator circuit, the cardiac ganglion. We discuss this plasticity at three levels: rapid homeostatic changes in membrane conductance, longer-term effects of neuromodulation on excitability, and the impacts of activity-dependent feedback on steady-state channel mRNA levels...
October 6, 2016: Current Opinion in Neurobiology
Carlo Ng Giachello, Richard A Baines
Stability of neural circuits is reliant on homeostatic mechanisms that return neuron activity towards pre-determined and physiologically appropriate levels. Without these mechanisms, changes due to synaptic plasticity, ageing and disease may push neural circuits towards instability. Whilst widely documented, understanding of how and when neurons determine an appropriate activity level, the so-called set-point, remains unknown. Genetically tractable model systems have greatly contributed to our understanding of neuronal homeostasis and continue to offer attractive models to explore these additional questions...
October 6, 2016: Current Opinion in Neurobiology
Ishfaq A Sheikh, Muhammad Yasir, Muhammad Abu-Elmagd, Tanveer A Dar, Adel M Abuzenadah, Ghazi A Damanhouri, Mohammed Al-Qahtani, Mohd A Beg
BACKGROUND: Currently, alternate plasticizers are used to replace phthalate plasticizers in children's toys, medical equipments and food packaging, due to the adverse effects of phthalate compounds on human health and laws prohibiting their use. Current information regarding the safety and potential adverse effects of alternate plasticizers is limited and recent studies have found alternate plasticizers to display similar characteristics to those observed in phthalate plasticizers. This study was undertaken to evaluate and predict the potential endocrine disrupting activity of the three most commonly used alternate plasticizers: di(2-ethylhexyl)terephthalate (DEHT), tris(2-ethylhexyl)trimellitate (TOTM), and diisononyl hexahydrophthalate (DINCH) against human sex hormone-binding globulin (SHBG) using in silico approaches...
September 30, 2016: BMC Structural Biology
Jaime Eugenín-von Bernhardi, Leda Dimou
NG2-glia are a mysterious and ubiquitous glial population with a highly branched morphology. Initial studies suggested that their unique function is the generation and maintenance of oligodendrocytes in the central nervous system (CNS), important for proper myelination and therefore for axonal support and fast conduction velocity. Over the last years this simplistic notion has been dramatically changed: the wide and homogeneous distribution of NG2-glia within all areas of the developing CNS that is maintained during the whole lifespan, their potential to also differentiate into other cell types in a spatiotemporal manner, their active capability of maintaining their population and their dynamic behavior in altered conditions have raised the question: are NG2-glia simple progenitor cells or do they play further major roles in the normal function of the CNS? In this chapter, we will discuss some important features of NG2-glia like their homeostatic distribution in the CNS and their potential to differentiate into diverse cell types...
2016: Advances in Experimental Medicine and Biology
Mitsuaki Kashiwagi, Yu Hayashi
Our sleep is composed of rapid eye movement (REM) sleep and non-REM (NREM) sleep. REM sleep is the major source of dreams, whereas synchronous cortical oscillations, called slow waves, are observed during NREM sleep. Both stages are unique to certain vertebrate species, and therefore, REM and NREM sleep are thought to be involved in higher-order brain functions. While several studies have revealed the importance of NREM sleep in growth hormone secretion, memory consolidation and brain metabolite clearance, the functions of REM sleep are currently almost totally unknown...
October 2016: Brain and Nerve, Shinkei Kenkyū No Shinpo
Giorgos Bamias, Fabio Cominelli
PURPOSE OF REVIEW: Cytokines of the intestinal microenvironment largely dictate immunological responses after mucosal insults and the dominance of homeostatic or proinflammatory pathways. This review presents important recent studies on the role of specific cytokines in the pathogenesis of intestinal inflammation. RECENT FINDINGS: The particular mucosal effects of cytokines depend on their inherent properties but also the cellular origin, type of stimulatory antigens, intermolecular interactions, and the particular immunological milieu...
November 2016: Current Opinion in Gastroenterology
Shauna L Houlihan, Alison A Lanctot, Yan Guo, Yuanyi Feng
Neuronal fate-restricted intermediate progenitors (IPs) are derived from the multipotent radial glia (RGs) and serve as the direct precursors for cerebral cortical neurons, but factors that control their neurogenic plasticity remain elusive. Here we report that IPs' neuron production is enhanced by abrogating filamin function, leading to the generation of periventricular neurons independent of normal neocortical neurogenesis and neuronal migration. Loss of Flna in neural progenitor cells (NPCs) led RGs to undergo changes resembling epithelial-mesenchymal transition (EMT) along with exuberant angiogenesis that together changed the microenvironment and increased neurogenesis of IPs...
September 24, 2016: ELife
Winnie Wefelmeyer, Christopher J Puhl, Juan Burrone
Neurons in the brain are highly plastic, allowing an organism to learn and adapt to its environment. However, this ongoing plasticity is also inherently unstable, potentially leading to aberrant levels of circuit activity. Homeostatic forms of plasticity are thought to provide a means of controlling neuronal activity by avoiding extremes and allowing network stability. Recent work has shown that many of these homeostatic modifications change the structure of subcellular neuronal compartments, ranging from changes to synaptic inputs at both excitatory and inhibitory compartments to modulation of neuronal output through changes at the axon initial segment (AIS) and presynaptic terminals...
October 2016: Trends in Neurosciences
Hamdy Shaban, Rory O'Connor, Saak V Ovsepian, Timothy G Dinan, John F Cryan, Harriët Schellekens
Hypothalamic neural circuits are recognised as primary sites of the neuromodulator effect of homeostatic food intake, whereas changes in ventral tegmental area (VTA), hippocampus and amygdala have been implicated in the hedonic, cognitive and emotional aspects of eating. Here, we discuss synaptic transmission and plasticity within brain circuits governing appetite and food intake behaviour, focusing on the metabolic hormones ghrelin and leptin. We discuss functional changes within these circuitries and critically assess the applicability of electrophysiological measurements using in vitro multielectrode array (MEA) systems to identify novel appetite modulators...
September 12, 2016: Drug Discovery Today
Brahim Tighilet, Sophie Dutheil, Marina I Siponen, Arnaud J Noreña
While many studies have been devoted to investigating the homeostatic plasticity triggered by cochlear hearing loss, the cellular and molecular mechanisms involved in these central changes remain elusive. In the present study, we investigated the possibility of reactive neurogenesis after unilateral cochlear nerve section in the cochlear nucleus (CN) of cats. We found a strong cell proliferation in all the CN sub-divisions ipsilateral to the lesion. Most of the newly generated cells survive up to 1 month after cochlear deafferentation in all cochlear nuclei (except the dorsal CN) and give rise to a variety of cell types, i...
2016: Frontiers in Pharmacology
Anna R Chambers, Juan J Salazar, Daniel B Polley
Neurons at higher stages of sensory processing can partially compensate for a sudden drop in peripheral input through a homeostatic plasticity process that increases the gain on weak afferent inputs. Even after a profound unilateral auditory neuropathy where >95% of afferent synapses between auditory nerve fibers and inner hair cells have been eliminated with ouabain, central gain can restore cortical processing and perceptual detection of basic sounds delivered to the denervated ear. In this model of profound auditory neuropathy, auditory cortex (ACtx) processing and perception recover despite the absence of an auditory brainstem response (ABR) or brainstem acoustic reflexes, and only a partial recovery of sound processing at the level of the inferior colliculus (IC), an auditory midbrain nucleus...
2016: Frontiers in Neural Circuits
Noemi Picco, Robert A Gatenby, Alexander R A Anderson
OBJECTIVE: Cancer stem cells (CSCs) have been hypothesized to initiate and drive tumor growth and recurrence due to their self-renewal ability. If correct, this hypothesis implies that successful therapy must focus primarily on eradication of this CSC fraction. However, recent evidence suggests stemness is niche dependent and may represent one of many phenotypic states that can be accessed by many cancer genotypes when presented with specific environmental cues. A better understanding of the relationship of stemness to niche-related phenotypic plasticity could lead to alternative treatment strategies...
September 8, 2016: IEEE Transactions on Bio-medical Engineering
Celine C Steinmetz, Vedakumar Tatavarty, Ken Sugino, Yasuyuki Shima, Anne Joseph, Heather Lin, Michael Rutlin, Mary Lambo, Chris M Hempel, Benjamin W Okaty, Suzanne Paradis, Sacha B Nelson, Gina G Turrigiano
Synaptic scaling is a form of homeostatic plasticity driven by transcription-dependent changes in AMPA-type glutamate receptor (AMPAR) trafficking. To uncover the pathways involved, we performed a cell-type-specific screen for transcripts persistently altered during scaling, which identified the μ subunit (μ3A) of the adaptor protein complex AP-3A. Synaptic scaling increased μ3A (but not other AP-3 subunits) in pyramidal neurons and redistributed dendritic μ3A and AMPAR to recycling endosomes (REs). Knockdown of μ3A prevented synaptic scaling and this redistribution, while overexpression (OE) of full-length μ3A or a truncated μ3A that cannot interact with the AP-3A complex was sufficient to drive AMPAR to REs...
September 6, 2016: Cell Reports
Heidi M Schambra, Isis E Martinez-Hernandez, Kevin J Slane, Amelia K Boehme, Randolph S Marshall, Ronald M Lazar
BACKGROUND: Reducing inhibitory neurotransmission with pharmacological agents is a potential approach for augmenting plasticity after stroke. Previous work in healthy subjects showed diminished intracortical inhibition after administration of theophylline. OBJECTIVE: We assessed the effect of single-dose theophylline on intracortical and interhemispheric inhibition in patients with chronic stroke, in a double-blind, placebo-controlled, cross-over study. METHODS: Eighteen subjects were randomly administered 300 mg of extended-release theophylline or placebo...
September 21, 2016: Restorative Neurology and Neuroscience
Marine Salery, Marc Dos Santos, Estefani Saint-Jour, Lara Moumné, Christiane Pagès, Vincent Kappès, Sébastien Parnaudeau, Jocelyne Caboche, Peter Vanhoutte
BACKGROUND: Addiction relies on persistent alterations of neuronal properties, which depends on gene regulation. Activity-regulated cytoskeleton-associated protein (Arc) is an immediate early gene that modulates neuronal plasticity underlying learning and memory. Its role in cocaine-induced neuronal and behavioral adaptations remains elusive. METHODS: Acute cocaine-treated mice were used for quantitative reverse-transcriptase polymerase chain reaction, immunocytochemistry, and confocal imaging from striatum...
June 16, 2016: Biological Psychiatry
Fatima Yousif Ismail, Ali Fatemi, Michael V Johnston
BACKGROUND: Neuroplasticity refers to the inherently dynamic biological capacity of the central nervous system (CNS) to undergo maturation, change structurally and functionally in response to experience and to adapt following injury. This malleability is achieved by modulating subsets of genetic, molecular and cellular mechanisms that influence the dynamics of synaptic connections and neural circuitry formation culminating in gain or loss of behavior or function. Neuroplasticity in the healthy developing brain exhibits a heterochronus cortex-specific developmental profile and is heightened during "critical and sensitive periods" of pre and postnatal brain development that enable the construction and consolidation of experience-dependent structural and functional brain connections...
August 9, 2016: European Journal of Paediatric Neurology: EJPN
Jin-Hyung Cho, Ben S Huang, Jesse M Gray
The stable formation of remote fear memories is thought to require neuronal gene induction in cortical ensembles that are activated during learning. However, the set of genes expressed specifically in these activated ensembles is not known; knowledge of such transcriptional profiles may offer insights into the molecular program underlying stable memory formation. Here we use RNA-Seq to identify genes whose expression is enriched in activated cortical ensembles labeled during associative fear learning. We first establish that mouse temporal association cortex (TeA) is required for remote recall of auditory fear memories...
2016: Scientific Reports
Fetch more papers »
Fetching more papers... Fetching...
Read by QxMD. Sign in or create an account to discover new knowledge that matter to you.
Remove bar
Read by QxMD icon Read

Search Tips

Use Boolean operators: AND/OR

diabetic AND foot
diabetes OR diabetic

Exclude a word using the 'minus' sign

Virchow -triad

Use Parentheses

water AND (cup OR glass)

Add an asterisk (*) at end of a word to include word stems

Neuro* will search for Neurology, Neuroscientist, Neurological, and so on

Use quotes to search for an exact phrase

"primary prevention of cancer"
(heart or cardiac or cardio*) AND arrest -"American Heart Association"