Read by QxMD icon Read


Wei Shi, Haitao Zhao, Bingan Lu
In this paper ZnCo2O4 nanowall arrays (NWAs) were first obtained through self-assembly followed by calcination. Then atomic layer deposition was used to fabricate core-shell ZnCo2O4@TiO2 NWAs as anode materials for lithium ion batteries (LIBs). The hierarchical NWA nanostructure has fast ion diffusion and electron transport at the electrode/electrolyte interface, while the excellent chemical stability of the TiO2 shell can protect the ZnCo2O4 NWAs from volume expansion during the charge and discharge processes...
February 23, 2017: Nanotechnology
Peng Zhou, Xiao Wang, Wenhao Guan, Dan Zhang, Libin Fang, Yinzhu Jiang
Cost-effective sodium ion batteries (SIBs) are emerging as a desirable alternative choice to lithium ion batteries in terms of application in large-scale energy storage devices. SnS2 is regarded as a potential anode material for SIBs because of its unique layered structure and high theoretical specific capacity. However, the development of SnS2 was hindered by the sluggish kinetics of the diffusion process and the inevitable volume change during repeated sodiation-desodiation processes. In this work, SnS2 with a unique nanowall array (NWA) structure is fabricated by one-step pulsed spray evaporation chemical vapor deposition (PSE-CVD), which could be used directly as binder-free and carbon-free anodes for SIBs...
March 1, 2017: ACS Applied Materials & Interfaces
Yuanyuan Huang, Tielin Shi, Shulan Jiang, Siyi Cheng, Xiangxu Tao, Yan Zhong, Guanglan Liao, Zirong Tang
As a new class of pseudocapacitive material, metal sulfides possess high electrochemical performance. However, their cycling performance as conventional electrodes is rather poor for practical applications. In this article, we report an original composite electrode based on NiCo2S4@NiO core-shell nanowire arrays (NWAs) with enhanced cycling stability. This three-dimensional electrode also has a high specific capacitance of 12.2 F cm(-2) at the current density of 1 mA cm(-2) and excellent cycling stability (about 89% retention after 10,000 cycles)...
December 7, 2016: Scientific Reports
Chun-Chao Hou, Wen-Fu Fu, Yong Chen
Crystalline Cu-based nanowire arrays (NWAs) including Cu(OH)2 , CuO, Cu2 O, and CuOx are facilely grown on Cu foil and are found to act as highly efficient, low-cost, and robust electrocatalysts for the oxygen evolution reaction (OER). Impressively, this noble-metal-free 3 D Cu(OH)2 -NWAs/Cu foil electrode shows the highest catalytic activity with a Tafel slope of 86 mV dec(-1) , an overpotential (η) of about 530 mV at ∼10 mA cm(-2) (controlled-potential electrolysis method without iR correction) and almost 100 % Faradic efficiency, paralleling the performance of the state-of-the-art RuO2 OER catalyst in 0...
August 23, 2016: ChemSusChem
Guojing Wang, Zhengcao Li, Mingyang Li, Chienhua Chen, Shasha Lv, Jiecui Liao
ZnO-CdS, ZnO-ZnS, and ZnO-Ag2S core-shell heterojunction structures were fabricated using low-temperature, facile and simple aqueous solution approaches. The polycrystalline sulfide shells effectively enhance the field emission (FE) properties of ZnO nanowires arrays (NWAs). This results from the formation of the staggered gap heterointerface (ZnO-sulfide) which could lead to an energy well at the interfaces. Hence, electrons can be collected when an electric field is applied. It is observed that ZnO-ZnS NWAs have the lowest turn-on field (3...
2016: Scientific Reports
Bo Liu, Dezhi Kong, Zhi Xiang Huang, Runwei Mo, Ye Wang, Zhaojun Han, Chuanwei Cheng, Hui Ying Yang
Three-dimensional (3D) hierarchical NiCo2O4@Ni3S2 core/shell arrays on Ni foam were synthesized by a facile, stepwise synthesis approach. The 3D heterogeneous NiCo2O4 nanostructure forms an interconnected web-like scaffold and serves as the core for the Ni3S2 shell. The as-prepared NiCo2O4@Ni3S2 nanowire array (NWA) electrodes exhibited excellent electrochemical performance, such as high specific areal capacitance and excellent cycling stability. The specific areal capacitance of 3.0 F cm(-2) at a current density of 5 mA cm(-2) is among the highest values and the only 6...
May 19, 2016: Nanoscale
Guojing Wang, Mingyang Li, Chienhua Chen, Shasha Lv, Jiecui Liao, Zhengcao Li
A simple approach to Ag2S quantum dot (QD) modification was used to tune the field emission (FE) properties of ZnO nanowire arrays (NWAs). By a simple and facile successive ionic layer adsorption and reaction (SILAR) approach, Ag2S QDs were uniformly and densely packed on ZnO nanowires (NWs) to form ZnO-Ag2S core-shell heterojunction structures. The FE properties of ZnO NWAs were effectively tuned by controlling the amount of Ag2S QDs. The turn-on field first reduces and then increases as the amount of Ag2S QDs increases, while the trend of the field-enhancement factor is inverse...
June 7, 2016: Dalton Transactions: An International Journal of Inorganic Chemistry
Hailiang Li, Qingjiang Yu, Yuewu Huang, Cuiling Yu, Renzhi Li, Jinzhong Wang, Fengyun Guo, Shujie Jiao, Shiyong Gao, Yong Zhang, Xitian Zhang, Peng Wang, Liancheng Zhao
Vertically aligned rutile TiO2 nanowire arrays (NWAs) with lengths of ∼44 μm have been successfully synthesized on transparent, conductive fluorine-doped tin oxide (FTO) glass by a facile one-step solvothermal method. The length and wire-to-wire distance of NWAs can be controlled by adjusting the ethanol content in the reaction solution. By employing optimized rutile TiO2 NWAs for dye-sensitized solar cells (DSCs), a remarkable power conversion efficiency (PCE) of 8.9% is achieved. Moreover, in combination with a light-scattering layer, the performance of a rutile TiO2 NWAs based DSC can be further enhanced, reaching an impressive PCE of 9...
June 1, 2016: ACS Applied Materials & Interfaces
Hong Yan Yue, Hong Zhang, Shuo Huang, Xuan Yu Lin, Xin Gao, Jing Chang, Long Hui Yao, Er Jun Guo
Three-dimensional (3D) graphene foam (GF) was prepared by chemical vapor deposition (CVD) using nickel foam as the template. ZnO nanowire arrays (ZnO NWAs) were vertically grown on the 3D GF by hydrothermal synthesis to prepare ZnO NWAs/GF. This hybrid combines the properties of ZnO NWAs and 3D GF, which has favorable electrocatalysis and outstanding electrical conductivity. The vertically aligned ZnO NWAs grown on the GF enlarged the electroactive surface area, which was investigated from the Fe(CN)6(3-4+) redox kinetic study...
March 15, 2017: Biosensors & Bioelectronics
Fiona Lecky, Wanda Russell, Gordon Fuller, Graham McClelland, Elspeth Pennington, Steve Goodacre, Kyee Han, Andrew Curran, Damien Holliman, Jennifer Freeman, Nathan Chapman, Matt Stevenson, Sonia Byers, Suzanne Mason, Hugh Potter, Tim Coats, Kevin Mackway-Jones, Mary Peters, Jane Shewan, Mark Strong
BACKGROUND: Reconfiguration of trauma services, with direct transport of traumatic brain injury (TBI) patients to neuroscience centres (NCs), bypassing non-specialist acute hospitals (NSAHs), could potentially improve outcomes. However, delays in stabilisation of airway, breathing and circulation (ABC) and the difficulties in reliably identifying TBI at scene may make this practice deleterious compared with selective secondary transfer from nearest NSAH to NC. National Institute for Health and Care Excellence guidance and systematic reviews suggested equipoise and poor-quality evidence - with regard to 'early neurosurgery' in this cohort - which we sought to address...
January 2016: Health Technology Assessment: HTA
Ming Li, Renjie Zhao, Yanjie Su, Zhi Yang, Yafei Zhang
The photoelectrochemical (PEC) performance of Cu2S nanowire arrays (NWAs) has been demonstrated to be greatly enhanced by dipping-assembly of carbon quantum dots (CQDs) on the surfaces of Cu2S NWAs. Experimental results show that the pristine Cu2S NWAs with higher aspect ratios exhibit better PEC performance due to the longer length scale for light absorption and the shorter length scale for minority carrier diffusion. Importantly, the CQDs decorated Cu2S NWAs exhibit remarkably enhanced photocurrent density, giving a photocurrent density of 1...
April 28, 2016: Nanoscale
Bo Wang, Songmei Li, Xiaoyu Wu, Jianhua Liu, Wenming Tian
Novel three-dimensional (3D) NiMoO4 nanowire arrays (NWAs) grown directly onto the surface of macroporous graphene foams (GF) with robust adhesion were synthesized via a facile chemical vapor deposition (CVD) and subsequent hydrothermal route. The as-prepared NiMoO4 nanowires are composed of ultra-small nanoparticles (∼5 nm) with a diameter of 70-150 nm and are several micrometers in length. Such as-grown NiMoO4 NWA/3DGF composites are then evaluated as monolithic electrodes for lithium-ion batteries (LIBs) without the need of binders or metal-based current collectors...
January 14, 2016: Physical Chemistry Chemical Physics: PCCP
Kun Zhao, Xiaoqin Yan, Yousong Gu, Zhuo Kang, Zhiming Bai, Shiyao Cao, Yichong Liu, Xiaohui Zhang, Yue Zhang
A CdS/reduced graphene oxide (RGO)/ZnO nanowire array (NWAs) heterostructure is designed, which exhibits enhanced photoelectrochemical (PEC) activity compared to pure ZnO, RGO/ZnO, and CdS/ZnO. The enhancement can be attributed to the synergistic effect of the high electron mobility of ordered 1D ZnO NWAs, extended visible-light absorption of CdS nanocrystals, and the formed type II band alignment between them. Moreover, the incorporation of RGO further promotes the charge carrier separation and transfer process due to its excellent charge collection and shuttling characteristics...
January 13, 2016: Small
Xiaoting Zheng, Yunlong Ye, Qian Yang, Baoyou Geng, Xiaojun Zhang
In this paper, hierarchical MnCo2O4@MnO2 core-shell nanowire arrays (MnCo2O4@MnO2 NWAs) with mesoporous and large surface area are synthesized on 3D nickel foam via a facile, two-step hydrothermal approach without any adscititious surfactant and binder. The electrode architecture takes advantage of the synergistic effects contributed from both the porous MnCo2O4 nanowire core and the MnO2 shell layer. The fabricated MnCo2O4@MnO2 NWA electrode for supercapacitors in aqueous electrolyte exhibits a significantly enhanced specific capacitance (858 F g(-1) at 1 A g(-1)), high energy density (36...
January 14, 2016: Dalton Transactions: An International Journal of Inorganic Chemistry
Guojing Wang, Zhengcao Li, Mingyang Li, Jiecui Liao, Chienhua Chen, Shasha Lv, Chuanqing Shi
This work presents a new method to improve the field emission (FE) properties of semiconductors decorated with low-cost graphene oxide (GO) nanosheets and trace amounts of noble metal. The Ag/GO/ZnO composite emitter exhibited efficient FE properties with a low turn-on field of 1.4 V μm(-1) and a high field enhancement factor of 7018. The excellent FE properties of the Ag/GO/ZnO composite can be attributed to the tunneling effect of electrons through the heterojunction. The FE properties of the Ag/GO/ZnO composite are slightly better than those of the Ag/ZnO composite which forms an energy well that collects electrons on interfaces when an electric field is applied...
December 21, 2015: Physical Chemistry Chemical Physics: PCCP
Zi-Hang Huang, Yu Song, Xin-Xin Xu, Xiao-Xia Liu
Highly aligned nanoarchitecture arrays directly grown on conducting substrates open up a new direction to accelerate Faradaic reactions for charge storage as well as address "dead volume" limitations for high-performance pseudocapacitor electrodes. Here we reported the electrochemical fabrication of well-ordered polypyrrole (PPy) nanowire arrays (NWAs) on surfaces of carbon fibers in an untreated carbon cloth to construct hierarchical structures constituted by the three-dimensional conductive carbon fiber skeleton and the atop well-ordered electroactive polymer nanowires...
November 18, 2015: ACS Applied Materials & Interfaces
Dezhi Kong, Weina Ren, Chuanwei Cheng, Ye Wang, Zhixiang Huang, Hui Ying Yang
In this article, we report a novel electrode of NiCo2O4 nanowire arrays (NWAs) on carbon textiles with a polypyrrole (PPy) nanosphere shell layer to enhance the pseudocapacitive performance. The merits of highly conductive PPy and short ion transport channels in ordered NiCo2O4 mesoporous nanowire arrays together with the synergistic effect between NiCo2O4 and PPy result in a high specific capacitance of 2244 F g(-1), excellent rate capability, and cycling stability in NiCo2O4/PPy electrode. Moreover, a lightweight and flexible asymmetric supercapacitor (ASC) device is successfully assembled using the hybrid NiCo2O4@PPy NWAs and activated carbon (AC) as electrodes, achieving high energy density (58...
September 30, 2015: ACS Applied Materials & Interfaces
Bo Wang, Songmei Li, Xiaoyu Wu, Bin Li, Jianhua Liu, Mei Yu
A novel and facile two-step strategy is successfully developed for the large-scale fabrication of hierarchical mesoporous CoFe2O4 nanowire arrays (NWAs) on flexible carbon fabric as integrated anodes for highly efficient and reversible lithium storage. The synthesis involves the co-deposition of uniform bimetallic (Co, Fe) carbonate hydroxide hydrate precursor NWAs on carbon fabric and subsequent thermal transformation to spinel CoFe2O4 without damaging the morphology. The as-prepared CoFe2O4 nanowires have unique mesoporous structures, which are constructed by many interconnected nanocrystals with sizes of about 15-20 nm...
September 7, 2015: Physical Chemistry Chemical Physics: PCCP
Dali Shao, Jian Gao, Guoqing Xin, Yiping Wang, Lu Li, Jian Shi, Jie Lian, Nikhil Koratkar, Shayla Sawyer
An environmentally friendly, low-cost, and large-scale method is developed for fabrication of Cl-doped ZnO nanowire arrays (NWAs) on 3D graphene foam (Cl-ZnO NWAs/GF), and investigates its applications as a highly efficient field emitter and photocatalyst. The introduction of Cl-dopant in ZnO increases free electrons in the conduction band of ZnO and also leads to the rough surface of ZnO NWAs, which greatly improves the field emission properties of the Cl-ZnO NWAs/GF. The Cl-ZnO NWAs/GF demonstrates a low turn-on field (≈1...
September 2015: Small
Junfeng Niu, Yunrong Dai, Lifeng Yin, Jianying Shang, John C Crittenden
Triclosan (TCS) is a potential threat to the environment and human health. Photocatalysis can be used to degrade TCS, but the photocatalytic efficiency is usually limited by the photoabsorptivity and photostability of the photocatalyst. In addition, some toxic by-products might also be generated during photocatalytic processes. In this study, we prepared Au-coated Cu2O nanowire arrays (Au-Cu2O NWAs) by beam sputtering Au onto Cu2O nanowires grown from a Cu foil. We found that photocatalytic degradation of TCS under visible light (420 nm < λ < 780 nm) irradiation and Au-Cu2O NWAs had several advantages...
July 14, 2015: Physical Chemistry Chemical Physics: PCCP
Fetch more papers »
Fetching more papers... Fetching...
Read by QxMD. Sign in or create an account to discover new knowledge that matter to you.
Remove bar
Read by QxMD icon Read

Search Tips

Use Boolean operators: AND/OR

diabetic AND foot
diabetes OR diabetic

Exclude a word using the 'minus' sign

Virchow -triad

Use Parentheses

water AND (cup OR glass)

Add an asterisk (*) at end of a word to include word stems

Neuro* will search for Neurology, Neuroscientist, Neurological, and so on

Use quotes to search for an exact phrase

"primary prevention of cancer"
(heart or cardiac or cardio*) AND arrest -"American Heart Association"