Read by QxMD icon Read

shoot apical meristem

Petra Žádníková, Krzysztof Wabnik, Anas Abuzeineh, Marҫal Gallemí, Dominique Van Der Straeten, Richard S Smith, Dirk Inzé, Jiří Friml, Przemyslaw Prusinkiewicz, Eva Benkova
Differential cell growth enables flexible organ bending in the presence of environmental signals such as light or gravity. A prominent example of the developmental processes based on differential cell growth is the formation of the apical hook that protects the fragile shoot apical meristem when it breaks through the soil during germination. Here, we combined in silico and in vivo approaches to identify a minimal mechanism producing auxin gradient-guided differential growth during the establishment of the apical hook in the model plant Arabidopsis thaliana...
October 17, 2016: Plant Cell
Min Woo Lee, Rira Seo, Yu Jeong Lee, Ju Hye Bae, Jung-Kwon Park, Joung-Hahn Yoon, Jei Wan Lee, Ho Won Jung
An Arabidopsis thaliana ALTERED MERISTEM PROGRAM1 (AtAMP1), which encodes a putative glutamate carboxypeptidase, not only controls shoot apical meristem development, but also is involved in tolerance response to abiotic stresses. Here, we introduce a novel mutant; named amp1-32 that is a phenocopier to previously isolated different amp1 mutant alleles. Interestingly, tiny leaves were continuously developed at the bottom of pre-emerged leaves in the amp1-32. The amp1-32 mutant was less sensitive to heat shock treatment lasting for 3 h, whereas disease symptoms were severely developed in the mutant after Pseudomonas syringae infection...
October 12, 2016: Biochemical and Biophysical Research Communications
Max E Kraner, Katrin Link, Michael Melzer, Arif B Ekici, Steffen Uebe, Pablo Tarazona, Ivo Feussner, Jörg Hofmann, Uwe Sonnewald
Plasmodesmata (PD) are microscopic pores connecting plant cells and enable cell-to-cell transport. Currently, little is known about the molecular mechanisms regulating PD formation and development. To uncover components of PD development we made use of the 17 kDa movement protein (MP17) encoded by the Potato leafroll virus (PLRV). The protein is required for cell-to-cell movement of the virus and localises to complex PD. Forward genetic screening for Arabidopsis mutants with altered PD-binding of MP17 revealed several mutant lines, while molecular genetics, biochemical and microscopic studies allowed further characterisation...
October 15, 2016: Plant Journal: for Cell and Molecular Biology
J Matthew Watson, Alexander Platzer, Anita Kazda, Svetlana Akimcheva, Sona Valuchova, Viktoria Nizhynska, Magnus Nordborg, Karel Riha
In plants, gametogenesis occurs late in development, and somatic mutations can therefore be transmitted to the next generation. Longer periods of growth are believed to result in an increase in the number of cell divisions before gametogenesis, with a concomitant increase in mutations arising due to replication errors. However, there is little experimental evidence addressing how many cell divisions occur before gametogenesis. Here, we measured loss of telomeric DNA and accumulation of replication errors in Arabidopsis with short and long life spans to determine the number of replications in lineages leading to gametes...
October 11, 2016: Proceedings of the National Academy of Sciences of the United States of America
John Paul Alvarez, Chihiro Furumizu, Idan Efroni, Yuval Eshed, John L Bowman
Leaves are flat determinate organs derived from indeterminate shoot apical meristems. The presence of a specific leaf meristem is debated, as anatomical features typical of meristems are not present in leaves. Here we demonstrate that multiple NGATHA (NGA) and CINCINNATA-class-TCP (CIN-TCP) transcription factors act redundantly, shortly after leaf initiation, to gradually restrict the activity of a leaf meristem in Arabidopsis thaliana to marginal and basal domains, and that their absence confers persistent marginal growth to leaves, cotyledons and floral organs...
October 6, 2016: ELife
Evelyne Zürcher, Jingchun Liu, Martin di Donato, Markus Geisler, Bruno Müller
Morphogenetic signals control the patterning of multicellular organisms. Cytokinins are mobile signals that are perceived by subsets of plant cells. We found that the responses to cytokinin signaling during Arabidopsis development are constrained by the transporter PURINE PERMEASE 14 (PUP14). In our experiments, the expression of PUP14 was inversely correlated to the cytokinin signaling readout. Loss of PUP14 function allowed ectopic cytokinin signaling accompanied by aberrant morphogenesis in embryos, roots, and the shoot apical meristem...
September 2, 2016: Science
Yaofeng Zhang, Dongqing Zhang, Huasheng Yu, Baogang Lin, Ying Fu, Shuijin Hua
In Brassica napus, floral development is a decisive factor in silique formation, and it is influenced by many cultivation practices including planting date. However, the effect of planting date on floral initiation in canola is poorly understood at present. A field experiment was conducted using a split plot design, in which three planting dates (early, 15 September, middle, 1 October, and late, 15 October) served as main plot and five varieties differing in maturity (1358, J22, Zhongshuang 11, Zheshuang 8, and Zheyou 50) employed as subplot...
2016: Frontiers in Plant Science
Mariano Perales, Kevin Rodriguez, Stephen Snipes, Ram Kishor Yadav, Mercedes Diaz-Mendoza, G Venugopala Reddy
Transcriptional mechanisms that underlie the dose-dependent regulation of gene expression in animal development have been studied extensively. However, the mechanisms of dose-dependent transcriptional regulation in plant development have not been understood. In Arabidopsis shoot apical meristems, WUSCHEL (WUS), a stem cell-promoting transcription factor, accumulates at a higher level in the rib meristem and at a lower level in the central zone where it activates its own negative regulator, CLAVATA3 (CLV3). How WUS regulates CLV3 levels has not been understood...
October 11, 2016: Proceedings of the National Academy of Sciences of the United States of America
Stefano Bencivenga, Antonio Serrano-Mislata, Max Bush, Samantha Fox, Robert Sablowski
The origin of the stem is a major but poorly understood aspect of plant development, partly because the stem initiates in a relatively inaccessible region of the shoot apical meristem called the rib zone (RZ). We developed quantitative 3D image analysis and clonal analysis tools, which revealed that the Arabidopsis homeodomain protein REPLUMLESS (RPL) establishes distinct patterns of oriented cell division and growth in the central and peripheral regions of the RZ. A genome-wide screen for target genes connected RPL directly to many of the key shoot development pathways, including the development of organ boundaries; accordingly, mutation of the organ boundary gene LIGHT-SENSITIVE HYPOCOTYL 4 restored RZ function and stem growth in the rpl mutant...
September 14, 2016: Developmental Cell
Luping Liu, Bo Li, Xigang Liu
The transposase-derived transcription factor genes FAR-RED ELONGATED HYPOCOTYL3 (FHY3) and FAR-RED IMPAIRED RESPONSE1 (FAR1) have redundant and multifaceted roles in plant growth and development during the vegetative stage, including phytochrome A-mediated far-red light (FR) signaling and circadian clock entrainment. Little is known about their functions in the reproductive stage. We recently demonstrated that FHY3 plays important roles in shoot apical meristem (SAM) maintenance and floral meristem (FM) determinacy through its target genes CLAVATA3 (CLV3), SEPALLATA1 (SEP1) and SEP2...
September 23, 2016: Plant Signaling & Behavior
Cris Kuhlemeier, Marja C P Timmermans
The differentiation of a leaf - from its inception as a semicircular bulge on the surface of the shoot apical meristem into a flattened structure with specialized upper and lower surfaces - is one of the most intensely studied processes in plant developmental biology. The large body of contemporary data on leaf dorsiventrality has its origin in the pioneering experiments of Ian Sussex, who carried out these studies as a PhD student in the early 1950s. Here, we review his original experiments in their historical context and describe our current understanding of this surprisingly complex process...
September 15, 2016: Development
Ying-Ying Li, Ao Shen, Wei Xiong, Qiong-Lin Sun, Qian Luo, Ting Song, Zheng-Long Li, Wei-Jiang Luan
BACKGROUND: The Class III homeodomain Leu zipper (HD-Zip III) gene family plays important roles in plant growth and development. Here, we analyze the function of OsHox32, an HD-Zip III family member, and show that it exhibits pleiotropic effects on regulating plant type architecture and leaf development in rice. RESULTS: Transgenic lines overexpressing OsHox32 (OsHox32-OV) produce narrow leaves that roll towards the adaxial side. Histological analysis revealed a decreased number of bulliform cells in OsHox32-OV lines...
December 2016: Rice
Nicolas Kral, Alexandra Hanna Ougolnikova, Giovanni Sena
In plants, shoot and root regeneration can be induced in the distinctive conditions of tissue culture (in vitro) but is also observed in intact individuals (in planta) recovering from tissue damage. Roots, for example, can regenerate their fully excised meristems in planta, even in mutants with impaired apical stem cell niches. Unfortunately, to date a comprehensive understanding of regeneration in plants is still missing. Here, we provide evidence that an imposed electric field can perturb apical root regeneration in Arabidopsis...
June 2016: Regeneration
Robrecht Dierck, Ellen De Keyser, Jan De Riek, Emmy Dhooghe, Johan Van Huylenbroeck, Els Prinsen, Dominique Van Der Straeten
In the production and breeding of Chrysanthemum sp., shoot branching is an important quality aspect as the outgrowth of axillary buds determines the final plant shape. Bud outgrowth is mainly controlled by apical dominance and the crosstalk between the plant hormones auxin, cytokinin and strigolactone. In this work the hormonal and genetic regulation of axillary bud outgrowth was studied in two differently branching cut flower Chrysanthemum morifolium (Ramat) genotypes. C17 is a split-type which forms an inflorescence meristem after a certain vegetative period, while C18 remains vegetative under long day conditions...
2016: PloS One
Jianqing Chen, Yinghui Jing, Xinyue Zhang, Leiting Li, Peng Wang, Shaoling Zhang, Hongsheng Zhou, Juyou Wu
Glutamate-like receptors (GLRs) is a highly conserved family of ligand-gated ion channels, which have been associated with various physiological and developmental processes. Here, we investigated the evolutionary pattern of GLRs in plants. We observed that tandem duplications occupied the largest proportion of the plant GLR gene family expansion. Based on a phylogenetic tree, we suggested a new subfamily, GLR4, which is widespread in angiosperm but absence on Brassicales. Meanwhile, because GLR1 and GLR2 subfamilies were potential sister clades, we combined them into the GLR1&2 subfamily...
2016: Scientific Reports
Alessia Para, DurreShahwar Muhammad, Danielle A Orozco-Nunnelly, Ramis Memishi, Sophie Alvarez, Michael J Naldrett, Katherine M Warpeha
During the transition from seed to seedling, emerging embryos strategically balance available resources between building up defenses against environmental threats and initiating the developmental program that promotes the switch to autotrophy. We present evidence of a critical role for the phenylalanine (Phe) biosynthetic activity of AROGENATE DEHYDRATASE3 (ADT3) in coordinating reactive oxygen species (ROS) homeostasis and cotyledon development in etiolated Arabidopsis (Arabidopsis thaliana) seedlings. We show that ADT3 is expressed in the cotyledon and shoot apical meristem, mainly in the cytosol, and that the epidermis of adt3 cotyledons contains higher levels of ROS Genome-wide proteomics of the adt3 mutant revealed a general down-regulation of plastidic proteins and ROS-scavenging enzymes, corroborating the hypothesis that the ADT3 supply of Phe is required to control ROS concentration and distribution to protect cellular components...
October 2016: Plant Physiology
Farshad Roodbarkelari, Edwin P Groot
Homeodomain-leucine zipper proteins (HD-ZIPs) form a plant-specific family of transcription factors functioning as homo- or heterodimers. Certain members of all four classes of this family are involved in embryogenesis, the focus of this review. They support auxin biosynthesis, transport and response, which are in turn essential for the apical-basal patterning of the embryo, radicle formation and outgrowth of the cotyledons. They transcriptionally regulate meristem regulators to maintain the shoot apical meristem once it is initiated...
August 15, 2016: New Phytologist
Margaret E Wilson, Matthew Mixdorf, R Howard Berg, Elizabeth S Haswell
The balance between proliferation and differentiation in the plant shoot apical meristem is controlled by regulatory loops involving the phytohormone cytokinin and stem cell identity genes. Concurrently, cellular differentiation in the developing shoot is coordinated with the environmental and developmental status of plastids within those cells. Here, we employ an Arabidopsis thaliana mutant exhibiting constitutive plastid osmotic stress to investigate the molecular and genetic pathways connecting plastid osmotic stress with cell differentiation at the shoot apex...
September 15, 2016: Development
Jinshun Zhong, Sarah Powell, Jill C Preston
Evolution of fused petals (sympetaly) is considered to be an important innovation that has repeatedly led to increased pollination efficiency, resulting in accelerated rates of plant diversification. Although little is known about the underlying regulation of sympetaly, genetic pathways ancestrally involved in organ boundary establishment (e.g. CUP SHAPED COTYLEDON [CUC] 1-3 genes) are strong candidates. In sympetalous petunia, mutations in the CUC1/2-like orthologue NO APICAL MERISTEM (NAM) inhibit shoot apical meristem formation...
August 8, 2016: Plant Biology
Marion Louveaux, Sébastien Rochette, Léna Beauzamy, Arezki Boudaoud, Olivier Hamant
Exogenous mechanical perturbations on living tissues are commonly used to investigate whether cell effectors can respond to mechanical cues. However, in most of these experiments, the applied mechanical stress and/or the biological response are described only qualitatively. We developed a quantitative pipeline based on microindentation and image analysis to investigate the impact of a controlled and prolonged compression on microtubule behaviour in the Arabidopsis shoot apical meristem, using microtubule fluorescent marker lines...
August 2, 2016: Plant Journal: for Cell and Molecular Biology
Fetch more papers »
Fetching more papers... Fetching...
Read by QxMD. Sign in or create an account to discover new knowledge that matter to you.
Remove bar
Read by QxMD icon Read

Search Tips

Use Boolean operators: AND/OR

diabetic AND foot
diabetes OR diabetic

Exclude a word using the 'minus' sign

Virchow -triad

Use Parentheses

water AND (cup OR glass)

Add an asterisk (*) at end of a word to include word stems

Neuro* will search for Neurology, Neuroscientist, Neurological, and so on

Use quotes to search for an exact phrase

"primary prevention of cancer"
(heart or cardiac or cardio*) AND arrest -"American Heart Association"