Read by QxMD icon Read

Shoichiro kurata

Keita Masuko, Naoyuki Fuse, Kanae Komaba, Tomonori Katsuyama, Rumi Nakajima, Hirofumi Furuhashi, Shoichiro Kurata
Drosophila imaginal disc cells exhibit a remarkable ability to convert cell fates in response to various perturbations, a phenomenon called transdetermination (TD). We previously identified winged eye (wge) as a factor that induces eye-to-wing TD upon overexpression in eye imaginal discs, but the molecular mechanisms underlying TD have remained largely unclear. Here, we found that wge induces various histone modifications and enhances the methylation of Lys9 on histone H3 (H3K9), a feature of heterochromatin...
January 2, 2018: Cell Reports
Aki Hori, Shoichiro Kurata, Takayuki Kuraishi
In this study, fruit fly of the genus Drosophila is utilized as a suitable model animal to investigate the molecular mechanisms of innate immunity. To combat orally transmitted pathogenic Gram-negative bacteria, the Drosophila gut is armed with the peritrophic matrix, which is a physical barrier composed of chitin and glycoproteins: the Duox system that produces reactive oxygen species (ROS), which in turn sterilize infected microbes, and the IMD pathway that regulates the expression of antimicrobial peptides (AMPs), which in turn control ROS-resistant pathogens...
January 1, 2018: Biochemical and Biophysical Research Communications
Hiroyuki Kenmoku, Aki Hori, Takayuki Kuraishi, Shoichiro Kurata
Drosophila adults have been utilized as a genetically tractable model organism to decipher the molecular mechanisms of humoral innate immune responses. In an effort to promote the utility of Drosophila larvae as an additional model system, in this study, we describe a novel aspect of an induction mechanism for innate immunity in these larvae. By using a fine tungsten needle created for manipulating semi-conductor devices, larvae were subjected to septic injury. However, although Toll pathway mutants were susceptible to infection with Gram-positive bacteria as had been shown for Drosophila adults, microbe clearance was not affected in the mutants...
March 1, 2017: Disease Models & Mechanisms
Hiroyuki Kenmoku, Hiroki Ishikawa, Manabu Ote, Takayuki Kuraishi, Shoichiro Kurata
The metazoan gut performs multiple physiological functions, including digestion and absorption of nutrients, and also serves as a physical and chemical barrier against ingested pathogens and abrasive particles. Maintenance of these functions and structures is partly controlled by the nervous system, yet the precise roles and mechanisms of the neural control of gut integrity remain to be clarified in Drosophila Here, we screened for GAL4 enhancer-trap strains and labeled a specific subsets of neurons, using Kir2...
August 1, 2016: Journal of Experimental Biology
Nao Ozawa, Hirofumi Furuhashi, Keita Masuko, Eriko Numao, Takashi Makino, Tamaki Yano, Shoichiro Kurata
Over-expression of Winged-Eye (WGE) in the Drosophila eye imaginal disc induces an eye-to-wing transformation. Endogenous WGE is required for organ development, and wge-deficient mutants exhibit growth arrest at the larval stage, suggesting that WGE is critical for normal growth. The function of WGE, however, remains unclear. Here, we analyzed the subcellular localization of WGE to gain insight into its endogenous function. Immunostaining showed that WGE localized to specific nuclear foci called the histone locus body (HLB), an evolutionarily conserved nuclear body required for S phase-specific histone mRNA production...
May 2016: Genes to Cells: Devoted to Molecular & Cellular Mechanisms
Haruhisa Kikuchi, Tsuyoshi Hoshikawa, Shoichiro Kurata, Yasuhiro Katou, Yoshiteru Oshima
Gonytolide A (1), a dimeric chromanone substituted with the γ-lactone, shows promoting activity of innate immune responses. However, biological studies on this compound have been limited by the low amounts of 1 available from natural resources and the difficulty of its synthesis. In this study, we designed and synthesized structure-simplified gonytolide derivatives. Bischromone 10 and biflavone 13 both promoted the mammalian TNF-α signaling pathway and Drosophila innate immunity. They did not contain a chiral center and were easy to synthesize...
May 27, 2016: Journal of Natural Products
Hirotaka Kanoh, Li-Li Tong, Takayuki Kuraishi, Yamato Suda, Yoshiki Momiuchi, Fumi Shishido, Shoichiro Kurata
The Drosophila Toll pathway plays important roles in innate immune responses against Gram-positive bacteria and fungi. To identify previously uncharacterized components of this pathway, we performed comparative, ex vivo, genome-wide RNA interference screening. In four screens, we overexpressed the Toll adaptor protein dMyd88, the downstream kinase Pelle, or the nuclear factor κB (NF-κB) homolog Dif, or we knocked down Cactus, the Drosophila homolog of mammalian inhibitor of NF-κB. On the basis of these screens, we identified the E3 ubiquitin ligase Sherpa as being necessary for the activation of Toll signaling...
October 27, 2015: Science Signaling
Hirotaka Kanoh, Takayuki Kuraishi, Li-Li Tong, Ryo Watanabe, Shinji Nagata, Shoichiro Kurata
Damage-associated molecular patterns (DAMPs), so-called "danger signals," play important roles in host defense and pathophysiology in mammals and insects. In Drosophila, the Toll pathway confers damage responses during bacterial infection and improper cell-fate control. However, the intrinsic ligands and signaling mechanisms that potentiate innate immune responses remain unknown. Here, we demonstrate that a Drosophila larva-derived tissue extract strongly elicits Toll pathway activation via the Toll receptor...
November 13, 2015: Biochemical and Biophysical Research Communications
Takeshi Tomita, Katsuaki Ieguchi, Frédéric Coin, Yasuhiro Kato, Haruhisa Kikuchi, Yoshiteru Oshima, Shoichiro Kurata, Yoshiro Maru
No abstract text is available yet for this article.
2015: PloS One
Haruhisa Kikuchi, Tsuyoshi Hoshikawa, Shimpei Fujimura, Noriaki Sakata, Shoichiro Kurata, Yasuhiro Katou, Yoshiteru Oshima
Innate immunity is the front line of self-defense against microbial infection. After searching for natural compounds that regulate innate immunity using an ex vivo Drosophila culture system, we identified a new cyclic depsipeptide, aspergillicin F, from the fungus Aspergillus sp., as an innate immune suppressor. The total synthesis and biological evaluation of the aspergillicin family, including aspergillicin F, were performed, revealing that slight structural differences in the side chains of amino acid residues alter innate immunity-regulating activity...
August 28, 2015: Journal of Natural Products
Yoshiki Momiuchi, Kohei Kumada, Takayuki Kuraishi, Takeshi Takagaki, Toshiro Aigaki, Yoshiteru Oshima, Shoichiro Kurata
The NF-κB pathway is a phylogenetically conserved signaling pathway with a central role in inflammatory and immune responses. Here we demonstrate that a cochaperone protein, Droj2/DNAJA3, is involved in the activation of canonical NF-κB signaling in flies and in human cultured cells. Overexpression of Droj2 induced the expression of an antimicrobial peptide in Drosophila. Conversely, Droj2 knockdown resulted in reduced expression of antimicrobial peptides and higher susceptibility to Gram-negative bacterial infection in flies...
September 25, 2015: Journal of Biological Chemistry
Takayuki Kuraishi, Hiroyuki Kenmoku, Shoichiro Kurata
The intestinal tract is the main organ involved in host nutritional homeostasis. Intestinal function in both vertebrates and invertebrates is partly controlled by enteric neurons that innervate the gut. Though anatomical and functional aspects of enteric neurons are relatively less characterized in Drosophila than in large insects, analyses of the role of the enteric neurons in flies have remarkably progressed in the last few years. In this review, we first provide a summary of the structure and function of the Drosophila intestine...
December 2015: Insect Biochemistry and Molecular Biology
Shoichiro Kurata
No abstract text is available yet for this article.
October 2014: Seikagaku. the Journal of Japanese Biochemical Society
Takeshi Tomita, Katsuaki Ieguchi, Frédéric Coin, Fredric Coin, Yasuhiro Kato, Haruhisa Kikuchi, Yoshiteru Oshima, Shoichiro Kurata, Yoshiro Maru
Celastramycin A, a small molecule that inhibits the production of antibacterial peptides in an ex vivo culture system of Drosophila, suppresses the TNFα-mediated induction of IL-8 in mammalian cells. To understand its molecular mechanism, we examined Celastramycin A binding proteins and investigated their biological functions. Our screening and subsequent pull-down assay revealed ZFC3H1 (also known as CCDC131 or CSRC2), an uncharacterized zinc finger protein, as a Celastramycin A binding protein. The knockdown of ZFC3H1 reduced IL-8 expression levels in the TNFα-stimulated lung carcinoma cell line, LU99, and UV-irradiated HeLa cells...
2014: PloS One
Takayuki Kuraishi, Aki Hori, Shoichiro Kurata
Many insect species subsist on decaying and contaminated matter and are thus exposed to large quantities of microorganisms. To control beneficial commensals and combat infectious pathogens, insects must be armed with efficient systems for microbial recognition, signaling pathways, and effector molecules. The molecular mechanisms regulating these host-microbe interactions in insects have been largely clarified in Drosophila melanogaster with its powerful genetic and genomic tools. Here we review recent advances in this field, focusing mainly on the relationships between microbes and epithelial cells in the intestinal tract where the host exposure to the external environment is most frequent...
2013: Frontiers in Physiology
Shoichiro Kurata
Innate immunity is the front line of self-defense against infectious non-self in vertebrates and invertebrates. The innate immune system is mediated by germ-line encoding pattern recognition molecules (pathogen sensors) that recognize conserved molecular patterns present in the pathogens but absent in the host. Peptidoglycans (PGN) are essential cell wall components of almost all bacteria, except mycoplasma lacking a cell wall, which provides the host immune system an advantage for detecting invading bacteria...
January 2014: Developmental and Comparative Immunology
Noriko Tsurui-Nishimura, Thanh Quang Nguyen, Tomonori Katsuyama, Tatsurou Minami, Hirofumi Furuhashi, Yoshiteru Oshima, Shoichiro Kurata
Drosophila imaginal discs are an excellent model system for studies of developmental plasticity. In imaginal discs, most cells adhere strictly to their specific identity, but some cells undergo transdetermination, a process wherein the determined identity switches to another disc-specific identity. In this study, we performed gain-of-function screening and identified a gene, CG17836/Xrp1, that induces ectopic antennae in the eye field upon overexpression at the early eye disc stage. An essential factor in the distalization process, Distalles, and its upstream regulators Wingless, Hedgehog, and Decapentaplegic, are ectopically induced by CG17836/Xrp1 overexpression in eye discs, and this provides molecular evidence of the formation of ectopic antennae...
2013: Bioscience, Biotechnology, and Biochemistry
Monde Ntwasa, Akira Goto, Shoichiro Kurata
Antimicrobial peptides (AMPs) are activated in response to septic injury and have important roles in vertebrate and invertebrate immune systems. AMPs act directly against pathogens and have both wound healing and antitumor activities. Although coleopterans comprise the largest and most diverse order of eukaryotes and occupy an earlier branch than Drosophila in the holometabolous lineage of insects, their immune system has not been studied extensively. Initial research reports, however, indicate that coleopterans possess unique immune response mechanisms, and studies of these novel mechanisms may help to further elucidate innate immunity...
2012: International Journal of Microbiology
Seiji Tsuzuki, Masanori Ochiai, Hitoshi Matsumoto, Shoichiro Kurata, Atsushi Ohnishi, Yoichi Hayakawa
Antimicrobial peptides (AMPs), major innate immune effectors, are induced to protect hosts against invading microorganisms. AMPs are also induced under non-infectious stress; however, the signaling pathways of non-infectious stress-induced AMP expression are yet unclear. We demonstrated that growth-blocking peptide (GBP) is a potent cytokine that regulates stressor-induced AMP expression in insects.GBP overexpression in Drosophila elevated expression of AMPs.GBP-induced AMP expression did not require Toll and immune deficiency (Imd) pathway-related genes, but imd and basket were essential,indicating that GBP signaling in Drosophila did not use the orthodox Toll or Imd pathway but used the JNK pathway after association with the adaptor protein Imd...
2012: Scientific Reports
Haruhisa Kikuchi, Masato Isobe, Mizuki Sekiya, Yuko Abe, Tsuyoshi Hoshikawa, Kazunori Ueda, Shoichiro Kurata, Yasuhiro Katou, Yoshiteru Oshima
Innate immunity is the front line of self-defense against microbial infection. After searching for natural substances that regulate innate immunity using an ex vivo Drosophila culture system, we identified a novel dimeric chromanone, gonytolide A, as an innate immune promoter from the fungus Gonytrichum sp. along with gonytolides B and C. Gonytolide A also increased TNF-α-stimulated production of IL-8 in human umbilical vein endothelial cells.
September 2, 2011: Organic Letters
Fetch more papers »
Fetching more papers... Fetching...
Read by QxMD. Sign in or create an account to discover new knowledge that matter to you.
Remove bar
Read by QxMD icon Read

Search Tips

Use Boolean operators: AND/OR

diabetic AND foot
diabetes OR diabetic

Exclude a word using the 'minus' sign

Virchow -triad

Use Parentheses

water AND (cup OR glass)

Add an asterisk (*) at end of a word to include word stems

Neuro* will search for Neurology, Neuroscientist, Neurological, and so on

Use quotes to search for an exact phrase

"primary prevention of cancer"
(heart or cardiac or cardio*) AND arrest -"American Heart Association"