Read by QxMD icon Read

Neural stimulation

Guang-Zhe Huang, Mutsuo Taniguchi, Ye-Bo Zhou, Jing-Ji Zhang, Fumino Okutani, Yoshihiro Murata, Masahiro Yamaguchi, Hideto Kaba
The formation of mate recognition memory in mice is associated with neural changes at the reciprocal dendrodendritic synapses between glutamatergic mitral cell (MC) projection neurons and GABAergic granule cell (GC) interneurons in the accessory olfactory bulb (AOB). Although noradrenaline (NA) plays a critical role in the formation of the memory, the mechanism by which it exerts this effect remains unclear. Here we used extracellular field potential and whole-cell patch-clamp recordings to assess the actions of bath-applied NA (10 µM) on the glutamatergic transmission and its plasticity at the MC-to-GC synapse in the AOB...
April 2018: Learning & Memory
James P Roach, Aleksandra Pidde, Eitan Katz, Jiaxing Wu, Nicolette Ognjanovski, Sara J Aton, Michal R Zochowski
Network oscillations across and within brain areas are critical for learning and performance of memory tasks. While a large amount of work has focused on the generation of neural oscillations, their effect on neuronal populations' spiking activity and information encoding is less known. Here, we use computational modeling to demonstrate that a shift in resonance responses can interact with oscillating input to ensure that networks of neurons properly encode new information represented in external inputs to the weights of recurrent synaptic connections...
March 15, 2018: Proceedings of the National Academy of Sciences of the United States of America
Xin Zhao, Jinyu Liu, Shijun Yang, Dandan Song, Chen Wang, Chen Chen, Xiaoya Li, Qiuting Wang, Shasha Ge, Runmei Yang, Xiuhua Liu, Yulin Lin, Dayong Cai
ETHNOPHARMACOLOGICAL RELEVANCE: Vascular dementia (VaD) is the common cognitive disorder derived mainly from lacunar stroke (LS). The oxidative stress induced neurovascular coupling (NVC) dysfunction involves in the pathogenesis of VaD. Currently, there is no specific drug for VaD. Ling-Yang-Gou-Teng -Decoction (LG), a well-known traditional Chinese formula, has been used for preventing VaD in clinic. AIM OF THE STUDY: In this study, we aimed to investigate the underlying mechanism of LG on VaD in rats...
March 12, 2018: Journal of Ethnopharmacology
Richard Lindqvist, Chaitanya Kurhade, Jonathan D Gilthorpe, Anna K Överby
BACKGROUND: Flaviviruses are a group of diverse and emerging arboviruses and an immense global health problem. A number of flaviviruses are neurotropic, causing severe encephalitis and even death. Type I interferons (IFNs) are the first line of defense of the innate immune system against flavivirus infection. IFNs elicit the concerted action of numerous interferon-stimulated genes (ISGs) to restrict both virus infection and replication. Viperin (virus-inhibitory protein, endoplasmic reticulum-associated, IFN-inducible) is an ISG with broad-spectrum antiviral activity against multiple flaviviruses in vitro...
March 15, 2018: Journal of Neuroinflammation
Angus P Yu, Bjorn T Tam, Christopher W Lai, Doris S Yu, Jean Woo, Ka-Fai Chung, Stanley S Hui, Justina Y Liu, Gao X Wei, Parco M Siu
Tai Chi Chuan (TCC), a traditional Chinese martial art, is well-documented to result in beneficial consequences in physical and mental health. TCC is regarded as a mind-body exercise that is comprised of physical exercise and meditation. Favorable effects of TCC on body balance, gait, bone mineral density, metabolic parameters, anxiety, depression, cognitive function, and sleep have been previously reported. However, the underlying mechanisms explaining the effects of TCC remain largely unclear. Recently, advances in neuroimaging technology have offered new investigative opportunities to reveal the effects of TCC on anatomical morphologies and neurological activities in different regions of the brain...
2018: American Journal of Chinese Medicine
Marion Griton, Jan Pieter Konsman
Although the immune and nervous systems have long been considered independent biological systems, they turn out to mingle and interact extensively. The present review summarizes recent insights into the neural pathways activated by and involved in infection-induced inflammation and discusses potential clinical applications. The simplest activation concerns a reflex action within C-fibers leading to neurogenic inflammation. Low concentrations of pro-inflammatory cytokines or bacterial fragments may also act on these afferent nerve fibers to signal the central nervous system and bring about early fever, hyperalgesia and sickness behavior...
March 14, 2018: Clinical Autonomic Research: Official Journal of the Clinical Autonomic Research Society
Julia P Slopsema, John M Boss, Lane A Heyboer, Carson M Tobias, Brooke P Draggoo, Kathleen E Finn, Payton J Hoff, Katharine H Polasek
Background: Electrical stimulation is increasingly relevant in a variety of medical treatments. In this study, surface electrical stimulation was evaluated as a method to non-invasively target a neural function, specifically natural sensation in the distal limbs. Method: Electrodes were placed over the median and ulnar nerves at the elbow and the common peroneal and lateral sural cutaneous nerves at the knee. Strength-duration curves for sensation were compared between nerves...
2018: Open Biomedical Engineering Journal
Tao Tan, Wei Wang, Haitao Xu, Zhilin Huang, Yu Tian Wang, Zhifang Dong
Patients with autism spectrum disorder (ASD) display abnormalities in neuronal development, synaptic function and neural circuits. The imbalance of excitatory and inhibitory (E/I) synaptic transmission has been proposed to cause the main behavioral characteristics of ASD. Repetitive transcranial magnetic stimulation (rTMS) can directly or indirectly induce excitability and synaptic plasticity changes in the brain noninvasively. However, whether rTMS can ameliorate autistic-like behaviors in animal model via regulating the balance of E/I synaptic transmission is unknown...
2018: Frontiers in Cellular Neuroscience
Angelo Forli, Dania Vecchia, Noemi Binini, Francesca Succol, Serena Bovetti, Claudio Moretti, Francesco Nespoli, Mathias Mahn, Christopher A Baker, McLean M Bolton, Ofer Yizhar, Tommaso Fellin
Sensory information is encoded within the brain in distributed spatiotemporal patterns of neuronal activity. Understanding how these patterns influence behavior requires a method to measure and to bidirectionally perturb with high spatial resolution the activity of the multiple neuronal cell types engaged in sensory processing. Here, we combined two-photon holography to stimulate neurons expressing blue light-sensitive opsins (ChR2 and GtACR2) with two-photon imaging of the red-shifted indicator jRCaMP1a in the mouse neocortex in vivo...
March 13, 2018: Cell Reports
Jean-Paul Noel, Olaf Blanke, Elisa Magosso, Andrea Serino
Interactions between the body and the environment occur within the Peri-Personal Space (PPS), the space immediately surrounding the body. The PPS is encoded by multisensory (audio-tactile, visual-tactile) neurons that possess receptive fields (RFs) anchored on the body and restricted in depth. The extension in depth of PPS neurons' RFs has been documented to change dynamically as a function of the velocity of incoming stimuli, but the underlying neural mechanisms are still unknown. Here, by integrating a psychophysical approach with neural network modeling, we propose a mechanistic explanation behind this inherent dynamic property of PPS...
March 14, 2018: Journal of Neurophysiology
M Campos-Friz, U Hubbe
BACKGROUND: Complex spinal surgery in elderly patients mostly treats degenerative spine alterations. The use of multimodal intraoperative neuromonitoring (IONM) has proven to be a useful tool to recognize neural deterioration during such operations. Elderly patients often have preexisting neural impairment, which leads to difficulties in deriving some potentials or can even lead to not obtaining any potentials at all. PRACTICE AND PROSPECTS: For reliable benefits from IONM a combined use of monitoring and mapping methods as well as the right choice of methods according to the spine level to be treated and a definition of the neural structures in danger is needed...
March 13, 2018: Der Orthopäde
Zhaoqun Liu, Lingling Wang, Zhao Lv, Zhi Zhou, Weilin Wang, Meijia Li, Qilin Yi, Limei Qiu, Linsheng Song
It is becoming increasingly clear that neurotransmitters impose direct influence on regulation of the immune process. Recently, a simple but sophisticated neuroendocrine-immune (NEI) system was identified in oyster, which modulated neural immune response via a "nervous-hemocyte"-mediated neuroendocrine immunomodulatory axis (NIA)-like pathway. In the present study, the de novo synthesis of neurotransmitters and their immunomodulation in the hemocytes of oyster Crassostrea gigas were investigated to understand the autocrine/paracrine pathway independent of the nervous system...
2018: Frontiers in Immunology
Maria M Buckley, Dervla O'Malley
Background and Objectives: Bidirectional signaling between the gastrointestinal tract and the brain is vital for maintaining whole-body homeostasis. Moreover, emerging evidence implicates vagal afferent signaling in the modulation of host physiology by microbes, which are most abundant in the colon. This study aims to optimize and advance dissection and recording techniques to facilitate real-time recordings of afferent neural signals originating in the distal colon. New Protocol: This paper describes a dissection technique, which facilitates extracellular electrophysiological recordings from visceral pelvic, spinal and vagal afferent neurons in response to stimulation of the distal colon...
2018: Frontiers in Neuroscience
Tianxiao Jiang, Su Liu, Giuseppe Pellizzer, Aydin Aydoseli, Sacit Karamursel, Pulat A Sabanci, Altay Sencer, Candan Gurses, Nuri F Ince
Functional mapping of eloquent cortex before the resection of a tumor is a critical procedure for optimizing survival and quality of life. In order to locate the hand area of the motor cortex in two patients with low-grade gliomas (LGG), we recorded electrocorticogram (ECoG) from a 113 channel hybrid high-density grid (64 large contacts with diameter of 2.7 mm and 49 small contacts with diameter of 1 mm) while they executed hand clenching movements. We investigated the spatio-spectral characteristics of the neural oscillatory activity and observed that, in both patients, the hand movements were consistently associated with a wide spread power decrease in the low frequency band (LFB: 8-32 Hz) and a more localized power increase in the high frequency band (HFB: 60-280 Hz) within the sensorimotor region...
2018: Frontiers in Neuroscience
Hyejin An, Hyun-Chool Shin
It is essential to build a system to generate proper neural stimulus signals with adjusting parameters. We developed a stimulator with up to four channels for separate settings in periodic and non-periodic modes. The device can support a closed-loop experimental system which utilizes neural information in real time as a feedback for controlling stimuli. To confirm whether stimulating signals are properly produced and delivered inside the brain, two experiments with rats were conducted. We observed that the change of firing rates and the cross-power spectral density increased after stimulation which meant that electric signals were transferred well and that they affected the neurons' activities...
February 2018: Experimental Neurobiology
Anastasia Greenberg, Javad Karimi Abadchi, Clayton T Dickson, Majid H Mohajerani
The signature rhythm of slow-wave forebrain activity is the large amplitude, slow oscillation (SO: ∼1 Hz) made up of alternating synchronous periods of activity and silence at the single cell and network levels. On each wave, the SO originates at a unique location and propagates across the neocortex. Attempts to manipulate SO activity using electrical fields have been shown to entrain cortical networks and enhance memory performance. However, neural activity during this manipulation has remained elusive due to methodological issues in typical electrical recordings...
March 10, 2018: NeuroImage
Kevin C Kemp, Kelly Hares, Juliana Redondo, Amelia J Cook, Harry R Haynes, Bronwen R Burton, Mark A Pook, Claire M Rice, Neil J Scolding, Alastair Wilkins
OBJECTIVES: Friedreich's ataxia is an incurable inherited neurological disease caused by frataxin deficiency. Here we report the neuro-reparative effects of myeloablative allogeneic bone marrow transplantation in a humanised murine model of the disease. METHODS: Mice received a transplant of fluorescently-tagged sex mis-matched bone marrow cells expressing wild-type frataxin and were assessed at monthly intervals using a range of behavioural motor performance tests...
March 13, 2018: Annals of Neurology
Chandrakanth Reddy Edamakanti, Jeehaeh Do, Alessandro Didonna, Marco Martina, Puneet Opal
Spinocerebellar ataxia type 1 (SCA1) is an adult-onset neurodegenerative disease caused by a polyglutamine expansion in the protein ATXN1, which is involved in transcriptional regulation. Although symptoms appear relatively late in life, primarily from cerebellar dysfunction, pathogenesis begins early, with brain-wide transcriptional changes detectable as early as a week after birth in SCA1 knock-in mice. Given the importance of this postnatal period for cerebellar development, we asked whether this region might be developmentally altered by mutant ATXN1...
March 13, 2018: Journal of Clinical Investigation
Patrick D Ganzer, Michael J Darrow, Eric C Meyers, Bleyda R Solorzano, Andrea D Ruiz, Nicole M Robertson, Katherine S Adcock, Justin T James, Han S Jeong, April M Becker, Mark P Goldberg, David T Pruitt, Seth A Hays, Michael P Kilgard, Robert L Rennaker
Recovery from serious neurological injury requires substantial rewiring of neural circuits. Precisely-timed electrical stimulation could be used to restore corrective feedback mechanisms and promote adaptive plasticity after neurological insult, such as spinal cord injury (SCI) or stroke. This study provides the first evidence that closed-loop vagus nerve stimulation (CLV) based on the synaptic eligibility trace leads to dramatic recovery from the most common forms of SCI. The addition of CLV to rehabilitation promoted substantially more recovery of forelimb function compared to rehabilitation alone following chronic unilateral or bilateral cervical SCI in a rat model...
March 13, 2018: ELife
Marco A Minetto, Alberto Botter, Giulia Gamerro, Ilaria Varvello, Giuseppe Massazza, Rosa G Bellomo, Nicola A Maffiuletti, Raoul Saggini
BACKGROUND: The "contralateral effect" phenomenon refers to the strength gain in the opposite, untrained homonymous muscle following unilateral training. Previous studies showed that neuromuscular electrical stimulation (NMES) of the right quadriceps facilitated maximal voluntary strength and efferent neural drive of the left knee extensors, while no previous study investigated the contralateral effect elicited by focal muscle vibration. AIM: To investigate whether quadriceps NMES and focal vibration, when applied unilaterally, have the same potential to enhance the contralateral muscle strength and the associated neural drive...
March 12, 2018: European Journal of Physical and Rehabilitation Medicine
Fetch more papers »
Fetching more papers... Fetching...
Read by QxMD. Sign in or create an account to discover new knowledge that matter to you.
Remove bar
Read by QxMD icon Read

Search Tips

Use Boolean operators: AND/OR

diabetic AND foot
diabetes OR diabetic

Exclude a word using the 'minus' sign

Virchow -triad

Use Parentheses

water AND (cup OR glass)

Add an asterisk (*) at end of a word to include word stems

Neuro* will search for Neurology, Neuroscientist, Neurological, and so on

Use quotes to search for an exact phrase

"primary prevention of cancer"
(heart or cardiac or cardio*) AND arrest -"American Heart Association"