Read by QxMD icon Read


Afsaneh Salahvarzi, Mohamad Mahani, Masoud Torkzadeh-Mahani, Reza Alizadeh
An immunoassay method based on the peak shift of the localized surface plasmon resonance (LSPR) absorption maxima has been developed for the determination of the thyroid stimulating hormone (TSH) in human blood serum. The anti-TSH antibody was adsorbed on the synthesized gold nanoparticles by electrostatic forces. The efficiency of the nanobiosensor was improved by optimizing the factors affecting the probe construction such as the pH and the antibody to gold nanoparticles ratio. Dynamic light scattering was applied for the characterization of the constructed probe...
October 4, 2016: Analytical Biochemistry
Jingyu Shi, Jing Lyu, Feng Tian, Mo Yang
This paper presents a "turn-on" fluorescence biosensor based on graphene quantum dots (GQDs) and molybdenum disulfide (MoS2) nanosheets for rapid and sensitive detection of epithelial cell adhesion molecule (EpCAM). PEGylated GQDs were used as donor molecules, which could not only largely increase emission intensity but also prevent non-specific adsorption of PEGylated GQD on MoS2 surface. The sensing platform was realized by adsorption of PEGylated GQD labelled EpCAM aptamer onto MoS2 surface via van der Waals force...
September 4, 2016: Biosensors & Bioelectronics
Matta Durga Prakash, Siva Rama Krishna Vanjari, Chandra Shekhar Sharma, Shiv Govind Singh
This paper reports the synthesis and fabrication of aligned electrospun nanofibers derived out of multiwalled carbon nanotubes (MWCNTs) embedded SU-8 photoresist, which are targeted towards ultrasensitive biosensor applications. The ultrasensitivity (detection in the range of fg/mL) and the specificity of these biosensors were achieved by complementing the inherent advantages of MWCNTs such as high surface to volume ratio and excellent electrical and transduction properties with the ease of surface functionalization of SU-8...
2016: Sensors
Aruni P Malalasekera, Hongwang Wang, Thilani N Samarakoon, Dinusha N Udukala, Asanka S Yapa, Raquel Ortega, Tej B Shrestha, Hamad Alshetaiwi, Emily J McLaurin, Deryl L Troyer, Stefan H Bossmann
A nanobiosensor for arginase detection was designed and synthesized. It features a central dopamine-coated iron/iron oxide nanoparticle to which sulfonated cyanine 7.0 is tethered via a stable amide bond. Cyanine 5.5 is linked to the N-terminal of the peptide sequence GRRRRRRRG. Arginine (R) reacts to ornithine (O) in the presence of arginase. Based on calibration with commercially obtained arginase II, the limit of detection (LOD) is picomolar. It is noteworthy that the nanobiosensor for arginase detection does not show a fluorescence increase when incubated with the enzyme NO-reductase, which also uses arginase as substrate, but is indicative of an inflammatory response by the host to cancer and infections...
August 21, 2016: Nanomedicine: Nanotechnology, Biology, and Medicine
S Wang, J Sun, D D Zhang, P K Wong
The formation of microvascular networks plays essential roles in regenerative medicine and tissue engineering. Nevertheless, the self-organization mechanisms underlying the dynamic morphogenic process are poorly understood due to a paucity of effective tools for mapping the spatiotemporal dynamics of single cell behaviors. By establishing a single cell nanobiosensor along with live cell imaging, we perform dynamic single cell analysis of the morphology, displacement, and gene expression during microvascular self-organization...
October 14, 2016: Nanoscale
Monica Focsan, Andreea Campu, Ana-Maria Craciun, Monica Potara, Cosmin Leordean, Dana Maniu, Simion Astilean
In this manuscript we propose a simple and efficient strategy to improve the sensitivity of localized surface plasmon resonance (LSPR) shift-based biosensors using biotin-streptavidin recognition interaction as a proof-of-concept. Specifically, biotin molecules are immobilized on a low-cost plasmonic LSPR biosensor based on annealed self-assembled spherical gold nanoparticles (AuNSs) and successively incubated with increasing concentrations of streptavidin, achieving a limit of detection (LOD) of 5nM. Interestingly, when the detection is performed by the same biotin-functionalized plasmonic AuNSs substrate but against streptavidin previously conjugated to gold nanorods, the LSPR shift is 26-fold enhanced...
December 15, 2016: Biosensors & Bioelectronics
Taha Roodbar Shojaei, Mohamad Amran Mohd Salleh, Kamaruzaman Sijam, Raha Abdul Rahim, Afshin Mohsenifar, Reza Safarnejad, Meisam Tabatabaei
Due to the low titer or uneven distribution of Citrus tristeza virus (CTV) in field samples, detection of CTV by using conventional detection techniques may be difficult. Therefore, in the present work, the cadmium-telluride quantum dots (QDs) was conjugated with a specific antibody against coat protein (CP) of CTV, and the CP were immobilized on the surface of gold nanoparticles (AuNPs) to develop a specific and sensitive fluorescence resonance energy transfer (FRET)-based nanobiosensor for detecting CTV. The maximum FRET efficiency for the developed nano-biosensor was observed at 60% in AuNPs-CP/QDs-Ab ratio of 1:8...
December 5, 2016: Spectrochimica Acta. Part A, Molecular and Biomolecular Spectroscopy
Jules L Hammond, Nello Formisano, Pedro Estrela, Sandro Carrara, Jan Tkac
Electrochemical techniques have great promise for low-cost miniaturised easy-to-use portable devices for a wide range of applications-in particular, medical diagnosis and environmental monitoring. Different techniques can be used for biosensing, with amperometric devices taking the central role due to their widespread application in glucose monitoring. In fact, glucose biosensing takes an approximately 70% share of the biosensor market due to the need for diabetic patients to monitor their sugar levels several times a day, making it an appealing commercial market...
June 30, 2016: Essays in Biochemistry
Oluwasesan Adegoke, Min-Woong Seo, Tatsuya Kato, Shoji Kawahito, Enoch Y Park
Ultrasensitive, rapid and selective diagnostic probes are urgently needed to overcome the limitations of traditional probes for norovirus (NV). Here, we report the detection of NV genogroup II via nucleic acid hybridization technology using a quantum dot (QD)-conjugated molecular beacon (MB) probe. To boost the sensitivity of the MB assay system, an ultrasensitive QD fluorophore with unique optical properties was synthesized, characterized and exploited as a fluorescence signal generator. Alloyed thioglycolic (TGA)-capped CdZnSeS QDs with a high photoluminescence (PL) quantum yield (QY) value of 92% were synthesized, and a modified silanization method was employed to encapsulate the thiol-capped QDs in a silica layer...
December 15, 2016: Biosensors & Bioelectronics
Ramjee Pallela, Pranjal Chandra, Hui-Bog Noh, Yoon-Bo Shim
Metastasis is the major cause of cancer-associated death in humans, and its early diagnosis will help clinicians to develop suitable therapeutic strategies which may save life of cancer patients. In this direction, we designed an amperometric biosensor using a biocompatible conjugate to diagnose cancer metastasis by detecting epithelial cell adhesion molecule expressing metastatic cancer cells (Ep-MCCs). The sensor probe is fabricated by immobilizing monoclonal capture antibody (CapAnti) on the gold nanoparticles (AuNPs)/conducting polymer composite layer...
November 15, 2016: Biosensors & Bioelectronics
Jing Chen, Bosoon Park
Bacterial pathogens are one of the leading causes of food safety incidents and product recalls worldwide. Timely detection and identification of microbial contamination in agricultural and food products is crucial for disease prevention and outbreak investigation. In efforts to improve and/or replace time-consuming and laborious "gold standards" for pathogen detection, numerous alternative rapid methods have been proposed in the past 15 years, with a trend toward incorporating nanotechnology and nanomaterials in food pathogen detection...
June 2016: Journal of Food Protection
Xiao Li, Xinyu Liu
The first microfluidic paper-based origami nano-biosensor featuring zinc oxide nanowires and an electrochemical impedance spectroscopy biosensing mechanism, for label-free, ultrasensitive immunoassays is reported by X. Li and X. Liu on page 1326. The sensor consists of cellulose paper, a carbon ink electrode, and zinc oxide nanowires directly grown on the top. Possible parallelization of assays and high storage stability render the sensor promising for clinical diagnostics applications.
June 2016: Advanced Healthcare Materials
Maria Soler, M-Carmen Estevez, Roi Villar-Vazquez, J Ignacio Casal, Laura M Lechuga
Colorectal cancer is treatable and curable when detected at early stages. However there is a lack of less invasive and more specific screening and diagnosis methods which would facilitate its prompt identification. Blood circulating autoantibodies which are immediately produced by the immune system at tumor appearance have become valuable biomarkers for preclinical diagnosis of cancer. In this work, we present the rapid and label-free detection of colorectal cancer autoantibodies directly in blood serum or plasma using a recently developed nanoplasmonic biosensor...
August 3, 2016: Analytica Chimica Acta
Yi Li, Hong Yu Yang, Doo Sung Lee
Nanobiosensors with high sensitivity and specificity have shown great potential in the detection of diseases. The incorporation of therapeutic agents with nanobiosensors allows the simultaneous diagnosis and therapy of diseases. The delivery of nanobiosensors and therapeutic agents using polymers is a common strategy to improve imaging and therapeutic efficacies. These polymers play important roles in several aspects during a successful delivery process, such as increasing the stability and biocompatibility of the nanobiosensors and improving their cell endocytosis...
October 2016: Pharmaceutical Research
M I Haque Ansari, Shabir Hassan, Ahsanulhaq Qurashi, Firdous Ahmad Khanday
Over the last few decades, an increased demand has emerged for integrating biosensors with microfluidic- and nanofluidic-based lab-on-chip (LOC) devices for point-of-care (POC) diagnostics, in the medical industry and environmental monitoring of pathogenic threat agents. Such a merger of microfluidics with biosensing technologies allows for the precise control of volumes, as low as one nanolitre and the integration of various types of bioassays on a single miniaturized platform. This integration offers several favorable advantages, such as low reagent consumption, automation of sample preparation, reduction in processing time, low cost analysis, minimal handling of hazardous materials, high detection accuracy, portability and disposability...
November 15, 2016: Biosensors & Bioelectronics
Xiao Li, Xinyu Liu
Microfluidic paper-based analytical devices (μPADs) represent a promising platform technology for point-of-care diagnosis. Highly sensitive, rapid, and easy-to-perform immunoassays implemented on μPADs are desirable to fulfill the promise of the μPAD technology. This article reports the first microfluidic paper-based origami nanobiosensor (origami μPAD), which integrates zinc oxide nanowires (ZnO NWs) and electrochemical impedance spectroscopy (EIS) biosensing mechanism, for label-free, ultrasensitive immunoassays...
June 2016: Advanced Healthcare Materials
Masumeh Noruzi
The interesting characteristics of electrospun nanofibers such as high surface-to-volume ratio, nanoporosity, and high safety make them suitable candidates for use in a variety of applications. In the recent decade, electrospun nanofibers have been applied to different potential fields such as filtration, wound dressing, drug delivery, etc. and a significant number of review papers have been published in these fields. However, the use of electrospun nanofibers in agriculture is comparatively novel and is still in its infancy...
March 31, 2016: Journal of the Science of Food and Agriculture
Aparna Banerjee, Rajib Bandopadhyay
This review is a concise compilation of all the major researches on dextran nanoparticle based biomedical applications. Dextran is a highly biocompatible and biodegradable neutral bacterial exopolysaccharide with simple repeating glucose subunits. It's simple yet unique biopolymeric nature made it highly suitable as nanomedicine, nanodrug carrier, and cell imaging system or nanobiosensor. Most importantly, it is extremely water soluble and shows no post drug delivery cellular toxicity. Complete metabolism of dextran is possible inside body thus possibility of renal failure is minimum...
June 2016: International Journal of Biological Macromolecules
Duo Lin, Hao Huang, Sufang Qiu, Shangyuan Feng, Guannan Chen, Rong Chen
The purpose of this study was to develop a more powerful blood analysis method based on polarized surface enhanced Raman spectroscopy (SERS) technology for non-invasive and sensitive colorectal cancer (CRC) detection. The efficiency of different polarized scattering signals (non-polarization, parallel polarization and perpendicular polarization) on blood serum SERS was explored for the first time. Results demonstrated that polarized SERS was more sensitive to explore distinctive spectral differences between cancer and normal groups...
February 8, 2016: Optics Express
Morteza Hosseini, Fatemeh Mehrabi, Mohammad Reza Ganjali, Parviz Norouzi
A fluorescent aptasensor for detection of oxytetracycline (OTC) was presented based on fluorescence quenching of DNA aptamer-templated silver nanoclusters (AgNCs). The specific DNA scaffolds with two different nucleotides fragments were used: one was enriched with a cytosine sequence fragment (C12) that could produce DNA-AgNCs via a chemical reduction method, and another was the OTC aptamer fragment that could selectively bind to the OTC antibiotic. Thus, the as-prepared AgNCs could exhibit quenched fluorescence after binding to the target OTC...
February 22, 2016: Luminescence: the Journal of Biological and Chemical Luminescence
Fetch more papers »
Fetching more papers... Fetching...
Read by QxMD. Sign in or create an account to discover new knowledge that matter to you.
Remove bar
Read by QxMD icon Read

Search Tips

Use Boolean operators: AND/OR

diabetic AND foot
diabetes OR diabetic

Exclude a word using the 'minus' sign

Virchow -triad

Use Parentheses

water AND (cup OR glass)

Add an asterisk (*) at end of a word to include word stems

Neuro* will search for Neurology, Neuroscientist, Neurological, and so on

Use quotes to search for an exact phrase

"primary prevention of cancer"
(heart or cardiac or cardio*) AND arrest -"American Heart Association"