Read by QxMD icon Read


Shokoufeh Delkhahi, Mahdi Rahaie, Fereshteh Rahimi
MicroRNAs are small RNAs which regulate gene expression by translational repression or degradation of messenger RNAs. Regards to important role of these biomolecules in human disease progress, to produce sensitive, simple and cost-effective assays for microRNAs are in urgent demand. miR-137 in Alzheimer's patients has demonstrated its potential as non-invasive biomarkers in blood for Alzheimer's disease diagnosis and prognosis. This paper describes a novel, sensitive and specific microRNA assay based on Colorimetric detection of gold nanoparticles and hybridization chain reaction amplification (HCR)...
December 1, 2016: Journal of Fluorescence
Durga Prakash Matta, Suryasnata Tripathy, Siva Rama Krishna Vanjari, Chandra Shekhar Sharma, Shiv Govind Singh
We report the fabrication of a label free nano biosensor platform comprising single nanofiber that is derived out of multi-walled carbon nanotubes (MWCNTs) embedded SU-8 photoresist, for the detection of three important human cardiac biomarkers viz., myoglobin (Myo), cardiac Troponin I (cTn I) and Creatine Kinase-MB (CK-MB). These composite nanofibers were synthesized using electrospinning process. Single nanofibers were aligned between pairs of electrodes in-situ during the electrospinning process. The target proteins were detected using chemiresistive detection methodology...
December 2016: Biomedical Microdevices
Yasaman-Sadat Borghei, Morteza Hosseini, Mehdi Khoobi, Mohammad Reza Ganjali
This study was designed to develop a highly selective and sensitive method towards fluorimetric sensing of cysteine (Cys) in water and human serum by using copper nanocluster. The Cys-CuNCs were characterized by scanning electron microscopy (SEM), FTIR, fluorescence and UV-Vis analysis. Spectroscopic evidences showed different intensities that were attributed to the different size of Cys-CuNCs. Enhancement in fluorescence intensity of copper nanoclusters with an increase in concentration of cysteine may enable them to be good candidates in detection systems...
November 17, 2016: Journal of Fluorescence
Fereshte Sadat Sabet, Morteza Hosseini, Hossein Khabbaz, Mehdi Dadmehr, Mohammad Reza Ganjali
Aflatoxins are potential food pollutants produced by fungi. Among them, Aflatoxin B1 (AFB1) is the most toxic. Therefore, a great deal of concern is associated with AFB1 toxicity. In this work, utilizing a FRET-based method, we have developed a nanobiosensor for detection of AFB1 in agricultural foods. Aptamer-conjugated Quantum dots (QDs) are adsorbed to Au nanoparticles (AuNPs) due to interaction of aptamers with AuNPs leading to quenching effect on QDs fluorescence. Upon the addition of AFB1, the specific aptamers are attracted to AFB1, getting distance from AuNPs which result in fluorescence recovery...
April 1, 2017: Food Chemistry
Kenshin Takemura, Oluwasesan Adegoke, Naoto Takahashi, Tatsuya Kato, Tian-Cheng Li, Noritoshi Kitamoto, Tomoyuki Tanaka, Tetsuro Suzuki, Enoch Y Park
Flu infection, caused by the influenza virus, constitutes a serious threat to human lives worldwide. A rapid, sensitive and specific diagnosis is urgently needed for point-of-care treatment and to control the rapid spread of this disease. In this study, an ultrasensitive, rapid and specific localized surface plasmon resonance (LSPR)-induced immunofluorescence nanobiosensor has been developed for the influenza virus based on a gold nanoparticle (AuNP)-induced quantum dot (QD) fluorescence signal. Alloyed quaternary CdSeTeS QDs were synthesized via the hot-injection organometallic route and were subsequently capped with l-cysteine via a ligand exchange reaction...
October 20, 2016: Biosensors & Bioelectronics
Ali Zavari-Nematabad, Mohammadreza Alizadeh-Ghodsi, Hamed Hamishehkar, Esmaeel Alipour, Younes Pilehvar-Soltanahmadi, Nosratollah Zarghami
Reactivation of telomerase, which is observed in more than 85% of all known human tumours, is considered a promising tumour marker for cancer diagnosis. With respect to the biomedical importance of telomerase, we have developed a simple strategy based on liposomal fluorescent signal amplification for highly sensitive optical detection of telomerase activity using liposome-encapsulated cadmium telluride quantum dots. In this strategy, telomerase extracted from A549 cells elongated the biotinylated telomerase substrate primer, which was then immobilized on streptavidine-coated microplate wells...
November 7, 2016: Analytical and Bioanalytical Chemistry
P A Broderick, L Wenning, Y-S Li
Evaluating each patient and animal as its own control achieves personalized medicine, which honors the hippocratic philosophy, explaining that "it is far more important to know what person has the disease than what disease the person has." Similarly, individualizing molecular signaling directly from the patient's brain in real time is essential for providing prompt, patient-based treatment as dictated by the point of care. Fortunately, nanotechnology effectively treats many neurodegenerative diseases. In particular, the new medicinal frontier for the discovery of therapy for Parkinson's disease is nanotechnology and nanobiotechnology...
October 28, 2016: Journal of Neural Transmission
Afsaneh Salahvarzi, Mohamad Mahani, Masoud Torkzadeh-Mahani, Reza Alizadeh
An immunoassay method based on the peak shift of the localized surface plasmon resonance (LSPR) absorption maxima has been developed for the determination of the thyroid stimulating hormone (TSH) in human blood serum. The anti-TSH antibody was adsorbed on the synthesized gold nanoparticles by electrostatic forces. The efficiency of the nanobiosensor was improved by optimizing the factors affecting the probe construction such as the pH and the antibody to gold nanoparticles ratio. Dynamic light scattering was applied for the characterization of the constructed probe...
October 4, 2016: Analytical Biochemistry
Jingyu Shi, Jing Lyu, Feng Tian, Mo Yang
This paper presents a "turn-on" fluorescence biosensor based on graphene quantum dots (GQDs) and molybdenum disulfide (MoS2) nanosheets for rapid and sensitive detection of epithelial cell adhesion molecule (EpCAM). PEGylated GQDs were used as donor molecules, which could not only largely increase emission intensity but also prevent non-specific adsorption of PEGylated GQD on MoS2 surface. The sensing platform was realized by adsorption of PEGylated GQD labelled EpCAM aptamer onto MoS2 surface via van der Waals force...
September 4, 2016: Biosensors & Bioelectronics
Matta Durga Prakash, Siva Rama Krishna Vanjari, Chandra Shekhar Sharma, Shiv Govind Singh
This paper reports the synthesis and fabrication of aligned electrospun nanofibers derived out of multiwalled carbon nanotubes (MWCNTs) embedded SU-8 photoresist, which are targeted towards ultrasensitive biosensor applications. The ultrasensitivity (detection in the range of fg/mL) and the specificity of these biosensors were achieved by complementing the inherent advantages of MWCNTs such as high surface to volume ratio and excellent electrical and transduction properties with the ease of surface functionalization of SU-8...
2016: Sensors
Aruni P Malalasekera, Hongwang Wang, Thilani N Samarakoon, Dinusha N Udukala, Asanka S Yapa, Raquel Ortega, Tej B Shrestha, Hamad Alshetaiwi, Emily J McLaurin, Deryl L Troyer, Stefan H Bossmann
A nanobiosensor for arginase detection was designed and synthesized. It features a central dopamine-coated iron/iron oxide nanoparticle to which sulfonated cyanine 7.0 is tethered via a stable amide bond. Cyanine 5.5 is linked to the N-terminal of the peptide sequence GRRRRRRRG. Arginine (R) reacts to ornithine (O) in the presence of arginase. Based on calibration with commercially obtained arginase II, the limit of detection (LOD) is picomolar. It is noteworthy that the nanobiosensor for arginase detection does not show a fluorescence increase when incubated with the enzyme NO-reductase, which also uses arginase as substrate, but is indicative of an inflammatory response by the host to cancer and infections...
August 21, 2016: Nanomedicine: Nanotechnology, Biology, and Medicine
S Wang, J Sun, D D Zhang, P K Wong
The formation of microvascular networks plays essential roles in regenerative medicine and tissue engineering. Nevertheless, the self-organization mechanisms underlying the dynamic morphogenic process are poorly understood due to a paucity of effective tools for mapping the spatiotemporal dynamics of single cell behaviors. By establishing a single cell nanobiosensor along with live cell imaging, we perform dynamic single cell analysis of the morphology, displacement, and gene expression during microvascular self-organization...
October 14, 2016: Nanoscale
Monica Focsan, Andreea Campu, Ana-Maria Craciun, Monica Potara, Cosmin Leordean, Dana Maniu, Simion Astilean
In this manuscript we propose a simple and efficient strategy to improve the sensitivity of localized surface plasmon resonance (LSPR) shift-based biosensors using biotin-streptavidin recognition interaction as a proof-of-concept. Specifically, biotin molecules are immobilized on a low-cost plasmonic LSPR biosensor based on annealed self-assembled spherical gold nanoparticles (AuNSs) and successively incubated with increasing concentrations of streptavidin, achieving a limit of detection (LOD) of 5nM. Interestingly, when the detection is performed by the same biotin-functionalized plasmonic AuNSs substrate but against streptavidin previously conjugated to gold nanorods, the LSPR shift is 26-fold enhanced...
December 15, 2016: Biosensors & Bioelectronics
Taha Roodbar Shojaei, Mohamad Amran Mohd Salleh, Kamaruzaman Sijam, Raha Abdul Rahim, Afshin Mohsenifar, Reza Safarnejad, Meisam Tabatabaei
Due to the low titer or uneven distribution of Citrus tristeza virus (CTV) in field samples, detection of CTV by using conventional detection techniques may be difficult. Therefore, in the present work, the cadmium-telluride quantum dots (QDs) was conjugated with a specific antibody against coat protein (CP) of CTV, and the CP were immobilized on the surface of gold nanoparticles (AuNPs) to develop a specific and sensitive fluorescence resonance energy transfer (FRET)-based nanobiosensor for detecting CTV. The maximum FRET efficiency for the developed nano-biosensor was observed at 60% in AuNPs-CP/QDs-Ab ratio of 1:8...
December 5, 2016: Spectrochimica Acta. Part A, Molecular and Biomolecular Spectroscopy
Jules L Hammond, Nello Formisano, Pedro Estrela, Sandro Carrara, Jan Tkac
Electrochemical techniques have great promise for low-cost miniaturised easy-to-use portable devices for a wide range of applications-in particular, medical diagnosis and environmental monitoring. Different techniques can be used for biosensing, with amperometric devices taking the central role due to their widespread application in glucose monitoring. In fact, glucose biosensing takes an approximately 70% share of the biosensor market due to the need for diabetic patients to monitor their sugar levels several times a day, making it an appealing commercial market...
June 30, 2016: Essays in Biochemistry
Oluwasesan Adegoke, Min-Woong Seo, Tatsuya Kato, Shoji Kawahito, Enoch Y Park
Ultrasensitive, rapid and selective diagnostic probes are urgently needed to overcome the limitations of traditional probes for norovirus (NV). Here, we report the detection of NV genogroup II via nucleic acid hybridization technology using a quantum dot (QD)-conjugated molecular beacon (MB) probe. To boost the sensitivity of the MB assay system, an ultrasensitive QD fluorophore with unique optical properties was synthesized, characterized and exploited as a fluorescence signal generator. Alloyed thioglycolic (TGA)-capped CdZnSeS QDs with a high photoluminescence (PL) quantum yield (QY) value of 92% were synthesized, and a modified silanization method was employed to encapsulate the thiol-capped QDs in a silica layer...
December 15, 2016: Biosensors & Bioelectronics
Ramjee Pallela, Pranjal Chandra, Hui-Bog Noh, Yoon-Bo Shim
Metastasis is the major cause of cancer-associated death in humans, and its early diagnosis will help clinicians to develop suitable therapeutic strategies which may save life of cancer patients. In this direction, we designed an amperometric biosensor using a biocompatible conjugate to diagnose cancer metastasis by detecting epithelial cell adhesion molecule expressing metastatic cancer cells (Ep-MCCs). The sensor probe is fabricated by immobilizing monoclonal capture antibody (CapAnti) on the gold nanoparticles (AuNPs)/conducting polymer composite layer...
November 15, 2016: Biosensors & Bioelectronics
Jing Chen, Bosoon Park
Bacterial pathogens are one of the leading causes of food safety incidents and product recalls worldwide. Timely detection and identification of microbial contamination in agricultural and food products is crucial for disease prevention and outbreak investigation. In efforts to improve and/or replace time-consuming and laborious "gold standards" for pathogen detection, numerous alternative rapid methods have been proposed in the past 15 years, with a trend toward incorporating nanotechnology and nanomaterials in food pathogen detection...
June 2016: Journal of Food Protection
Xiao Li, Xinyu Liu
The first microfluidic paper-based origami nano-biosensor featuring zinc oxide nanowires and an electrochemical impedance spectroscopy biosensing mechanism, for label-free, ultrasensitive immunoassays is reported by X. Li and X. Liu on page 1326. The sensor consists of cellulose paper, a carbon ink electrode, and zinc oxide nanowires directly grown on the top. Possible parallelization of assays and high storage stability render the sensor promising for clinical diagnostics applications.
June 2016: Advanced Healthcare Materials
Maria Soler, M-Carmen Estevez, Roi Villar-Vazquez, J Ignacio Casal, Laura M Lechuga
Colorectal cancer is treatable and curable when detected at early stages. However there is a lack of less invasive and more specific screening and diagnosis methods which would facilitate its prompt identification. Blood circulating autoantibodies which are immediately produced by the immune system at tumor appearance have become valuable biomarkers for preclinical diagnosis of cancer. In this work, we present the rapid and label-free detection of colorectal cancer autoantibodies directly in blood serum or plasma using a recently developed nanoplasmonic biosensor...
August 3, 2016: Analytica Chimica Acta
Fetch more papers »
Fetching more papers... Fetching...
Read by QxMD. Sign in or create an account to discover new knowledge that matter to you.
Remove bar
Read by QxMD icon Read

Search Tips

Use Boolean operators: AND/OR

diabetic AND foot
diabetes OR diabetic

Exclude a word using the 'minus' sign

Virchow -triad

Use Parentheses

water AND (cup OR glass)

Add an asterisk (*) at end of a word to include word stems

Neuro* will search for Neurology, Neuroscientist, Neurological, and so on

Use quotes to search for an exact phrase

"primary prevention of cancer"
(heart or cardiac or cardio*) AND arrest -"American Heart Association"