keyword
MENU ▼
Read by QxMD icon Read
search

nanostructured thermoelectric material

keyword
https://www.readbyqxmd.com/read/28530718/resonant-thermoelectric-nanophotonics
#1
Kelly W Mauser, Seyoon Kim, Slobodan Mitrovic, Dagny Fleischman, Ragip Pala, K C Schwab, Harry A Atwater
Photodetectors are typically based either on photocurrent generation from electron-hole pairs in semiconductor structures or on bolometry for wavelengths that are below bandgap absorption. In both cases, resonant plasmonic and nanophotonic structures have been successfully used to enhance performance. Here, we show subwavelength thermoelectric nanostructures designed for resonant spectrally selective absorption, which creates large localized temperature gradients even with unfocused, spatially uniform illumination to generate a thermoelectric voltage...
May 22, 2017: Nature Nanotechnology
https://www.readbyqxmd.com/read/28508649/colloidal-synthesis-of-te-doped-bi-nanoparticles-low-temperature-charge-transport-and-thermoelectric-properties
#2
Da Hwi Gu, Seungki Jo, Hyewon Jeong, Hyeong Woo Ban, Sung Hoon Park, Seung Hwae Heo, Fredrick Kim, Jeong In Jang, Ji Eun Lee, Jae Sung Son
Electronically doped nanoparticles formed by incorporation of impurities have been of great interest because of their controllable electrical properties. However, the development of a strategy for n-type or p-type doping on sub-10 nm-sized nanoparticles under the quantum confinement regime is very challenging using conventional processes owing to the difficulty in synthesis. Herein, we report the colloidal chemical synthesis of sub-10 nm-sized Te-doped Bi nanoparticles with precisely controlled Te content from 0% to 5% and systematically investigate their low-temperature charge transport and thermoelectric properties...
May 16, 2017: ACS Applied Materials & Interfaces
https://www.readbyqxmd.com/read/28470243/bottom-up-engineering-of-thermoelectric-nanomaterials-and-devices-from-solution-processed-nanoparticle-building-blocks
#3
Silvia Ortega, Maria Ibáñez, Yu Liu, Yu Zhang, Maksym V Kovalenko, Doris Cadavid, Andreu Cabot
The conversion of thermal energy to electricity and vice versa by means of solid state thermoelectric devices is extremely appealing. However, its cost-effectiveness is seriously hampered by the relatively high production cost and low efficiency of current thermoelectric materials and devices. To overcome present challenges and enable a successful deployment of thermoelectric systems in their wide application range, materials with significantly improved performance need to be developed. Nanostructuration can help in several ways to reach the very particular group of properties required to achieve high thermoelectric performances...
May 4, 2017: Chemical Society Reviews
https://www.readbyqxmd.com/read/28469733/thermal-conductivity-engineering-of-bulk-and-one-dimensional-si-ge-nanoarchitectures
#4
Ali Kandemir, Ayberk Ozden, Tahir Cagin, Cem Sevik
Various theoretical and experimental methods are utilized to investigate the thermal conductivity of nanostructured materials; this is a critical parameter to increase performance of thermoelectric devices. Among these methods, equilibrium molecular dynamics (EMD) is an accurate technique to predict lattice thermal conductivity. In this study, by means of systematic EMD simulations, thermal conductivity of bulk Si-Ge structures (pristine, alloy and superlattice) and their nanostructured one dimensional forms with square and circular cross-section geometries (asymmetric and symmetric) are calculated for different crystallographic directions...
2017: Science and Technology of Advanced Materials
https://www.readbyqxmd.com/read/28436062/ultrahigh-average-thermoelectric-figure-of-merit-low-lattice-thermal-conductivity-and-enhanced-micro-hardness-in-nanostructured-gete-x-agsbse2-100-x
#5
Manisha Samanta, Subhajit Roychowdhury, Jay Ghatak, Suresh Perumal, Kanishka Biswas
Waste heat sources are generally diffused and provide a range of temperatures rather than a particular temperature. Thus, thermoelectric waste heat to electricity conversion requires high average thermoelectric figure of merit (ZTavg) of materials over the entire working temperature along with high peak thermoelectric figure of merit (ZTmax). Herein, we report an ultrahigh ZTavg of 1.4 for (GeTe)80(AgSbSe2)20 [TAGSSe-80] in the temperature range of 300-700K, which is one of the highest value measured among the state-of-art Pb-free thermoelectric materials...
April 24, 2017: Chemistry: a European Journal
https://www.readbyqxmd.com/read/28414210/scalable-production-of-the-silicon-tin-yin-yang-hybrid-structure-with-graphene-coating-for-high-performance-lithium-ion-battery-anodes
#6
Yan Jin, Yingling Tan, Xiaozhen Hu, Bin Zhu, Qinghui Zheng, Zijiao Zhang, Guoying Zhu, Qian Yu, Zhong Jin, Jia Zhu
Alloy anodes possessed of high theoretical capacity show great potential for next-generation advanced lithium-ion battery. Even though huge volume change during lithium insertion and extraction leads to severe problems, such as pulverization and an unstable solid-electrolyte interphase (SEI), various nanostructures including nanoparticles, nanowires, and porous networks can address related challenges to improve electrochemical performance. However, the complex and expensive fabrication process hinders the widespread application of nanostructured alloy anodes, which generate an urgent demand of low-cost and scalable processes to fabricate building blocks with fine controls of size, morphology, and porosity...
April 25, 2017: ACS Applied Materials & Interfaces
https://www.readbyqxmd.com/read/28397364/lattice-dislocations-enhancing-thermoelectric-pbte-in-addition-to-band-convergence
#7
Zhiwei Chen, Zhengzhong Jian, Wen Li, Yunjie Chang, Binghui Ge, Riley Hanus, Jiong Yang, Yue Chen, Mingxin Huang, Gerald Jeffrey Snyder, Yanzhong Pei
Phonon scattering by nanostructures and point defects has become the primary strategy for minimizing the lattice thermal conductivity (κL ) in thermoelectric materials. However, these scatterers are only effective at the extremes of the phonon spectrum. Recently, it has been demonstrated that dislocations are effective at scattering the remaining mid-frequency phonons as well. In this work, by varying the concentration of Na in Pb0.97 Eu0.03 Te, it has been determined that the dominant microstructural features are point defects, lattice dislocations, and nanostructure interfaces...
April 11, 2017: Advanced Materials
https://www.readbyqxmd.com/read/28368061/control-of-phonon-transport-by-the-formation-of-the-al2o3-interlayer-in-al2o3-zno-superlattice-thin-films-and-their-in-plane-thermoelectric-energy-generator-performance
#8
No-Won Park, Jay-Young Ahn, Tae-Hyun Park, Jung-Hun Lee, Won-Yong Lee, Kwanghee Cho, Young-Gui Yoon, Chel-Jong Choi, Jin-Seong Park, Sang-Kwon Lee
Recently, significant progress has been made in increasing the figure-of-merit (ZT) of various nanostructured materials, including thin-film and quantum dot superlattice structures. Studies have focused on the size reduction and control of the surface or interface of nanostructured materials since these approaches enhance the thermopower and phonon scattering in quantum and superlattice structures. Currently, bismuth-tellurium-based semiconductor materials are widely employed for thermoelectric (TE) devices such as TE energy generators and coolers, in addition to other sensors, for use at temperatures under 400 K...
April 3, 2017: Nanoscale
https://www.readbyqxmd.com/read/28338003/directional-phonon-suppression-function-as-a-tool-for-the-identification-of-ultralow-thermal-conductivity-materials
#9
Giuseppe Romano, Alexie M Kolpak
Boundary-engineering in nanostructures has the potential to dramatically impact the development of materials for high- efficiency conversion of thermal energy directly into electricity. In particular, nanostructuring of semiconductors can lead to strong suppression of heat transport with little degradation of electrical conductivity. Although this combination of material properties is promising for thermoelectric materials, it remains largely unexplored. In this work, we introduce a novel concept, the directional phonon suppression function, to unravel boundary-dominated heat transport in unprecedented detail...
March 24, 2017: Scientific Reports
https://www.readbyqxmd.com/read/28332537/mapping-vibrational-surface-and-bulk-modes-in-a-single-nanocube
#10
Maureen J Lagos, Andreas Trügler, Ulrich Hohenester, Philip E Batson
Imaging of vibrational excitations in and near nanostructures is essential for developing low-loss infrared nanophotonics, controlling heat transport in thermal nanodevices, inventing new thermoelectric materials and understanding nanoscale energy transport. Spatially resolved electron energy loss spectroscopy has previously been used to image plasmonic behaviour in nanostructures in an electron microscope, but hitherto it has not been possible to map vibrational modes directly in a single nanostructure, limiting our understanding of phonon coupling with photons and plasmons...
March 22, 2017: Nature
https://www.readbyqxmd.com/read/28318225/in-plane-anisotropies-of-polarized-raman-response-and-electrical-conductivity-in-layered-tin-selenide
#11
Xiaolong Xu, Qingjun Song, Haifeng Wang, Pan Li, Kun Zhang, Yilun Wang, Kai Yuan, Zichen Yang, Yu Ye, Lun Dai
The group IV-VI compound tin selenide (SnSe) has recently attracted particular interest due to its unexpectedly low thermal conductivity and high power factor and shows great promise for thermoelectric applications. With an orthorhombic lattice structure, SnSe displays intriguing anisotropic properties due to the low symmetry of the puckered in-plane lattice structure. When thermoelectric materials, such as SnSe, have decreased dimensionality, their thermoelectric conversion efficiency may be improved due to increased power factor and decreased thermal conductivity...
March 28, 2017: ACS Applied Materials & Interfaces
https://www.readbyqxmd.com/read/28314357/experimental-study-on-thermal-conductivity-and-hardness-of-cu-and-ni-nanoparticle-packed-bed-for-thermoelectric-application
#12
Zi-Zhen Lin, Cong-Liang Huang, Wen-Kai Zhen, Yan-Hui Feng, Xin-Xin Zhang, Ge Wang
The hot-wire method is applied in this paper to probe the thermal conductivity (TC) of Cu and Ni nanoparticle packed beds (NPBs). A different decrease tendency of TC versus porosity than that currently known is discovered. The relationship between the porosity and nanostructure is investigated to explain this unusual phenomenon. It is found that the porosity dominates the TC of the NPB in large porosities, while the TC depends on the contact area between nanoparticles in small porosities. Meanwhile, the Vickers hardness (HV) of NPBs is also measured...
December 2017: Nanoscale Research Letters
https://www.readbyqxmd.com/read/28290484/thermal-transport-in-nanocrystalline-si-and-sige-by-ab-initio-based-monte-carlo-simulation
#13
Lina Yang, Austin J Minnich
Nanocrystalline thermoelectric materials based on Si have long been of interest because Si is earth-abundant, inexpensive, and non-toxic. However, a poor understanding of phonon grain boundary scattering and its effect on thermal conductivity has impeded efforts to improve the thermoelectric figure of merit. Here, we report an ab-initio based computational study of thermal transport in nanocrystalline Si-based materials using a variance-reduced Monte Carlo method with the full phonon dispersion and intrinsic lifetimes from first-principles as input...
March 14, 2017: Scientific Reports
https://www.readbyqxmd.com/read/28262991/compromise-and-synergy-in-high-efficiency-thermoelectric-materials
#14
REVIEW
Tiejun Zhu, Yintu Liu, Chenguang Fu, Joseph P Heremans, Jeffrey G Snyder, Xinbing Zhao
The past two decades have witnessed the rapid growth of thermoelectric (TE) research. Novel concepts and paradigms are described here that have emerged, targeting superior TE materials and higher TE performance. These superior aspects include band convergence, "phonon-glass electron-crystal", multiscale phonon scattering, resonant states, anharmonicity, etc. Based on these concepts, some new TE materials with distinct features have been identified, including solids with high band degeneracy, with cages in which atoms rattle, with nanostructures at various length scales, etc...
March 6, 2017: Advanced Materials
https://www.readbyqxmd.com/read/28097598/influence-of-doping-and-nanostructuration-on-n-type-bi2-te0-8se0-2-3-alloys-synthesized-by-arc-melting
#15
Mouna Gharsallah, Federico Serrano-Sanchez, Norbert M Nemes, Jose Luis Martinez, Jose Antonio Alonso
In competitive thermoelectric devices for energy conversion and generation, high-efficiency materials of both n-type and p-type are required. For this, Bi2Te3-based alloys have the best thermoelectric properties in room temperature applications. Partial replacement of tellurium by selenium is expected to introduce new donor states in the band gap, which would alter electrical conductivity and thermopower. We report on the preparation of n-type Bi2(Te1-xSex)3 solid solutions by a straightforward arc-melting technique, yielding nanostructured polycrystalline pellets...
December 2017: Nanoscale Research Letters
https://www.readbyqxmd.com/read/28079961/highly-porous-thermoelectric-nanocomposites-with-low-thermal-conductivity-and-high-figure-of-merit-from-large-scale-solution-synthesized-bi2-te2-5-se0-5-hollow-nanostructures
#16
Biao Xu, Tianli Feng, Matthias T Agne, Lin Zhou, Xiulin Ruan, G Jeffery Snyder, Yue Wu
To enhance the performance of thermoelectric materials and enable access to their widespread applications, it is beneficial yet challenging to synthesize hollow nanostructures in large quantities, with high porosity, low thermal conductivity (κ) and excellent figure of merit (z T). Herein we report a scalable (ca. 11.0 g per batch) and low-temperature colloidal processing route for Bi2 Te2.5 Se0.5 hollow nanostructures. They are sintered into porous, bulk nanocomposites (phi 10 mm×h 10 mm) with low κ (0...
January 12, 2017: Angewandte Chemie
https://www.readbyqxmd.com/read/28073269/efficient-photothermoelectric-conversion-in-lateral-topological-insulator-heterojunctions
#17
Soudabeh Mashhadi, Dinh Loc Duong, Marko Burghard, Klaus Kern
Tuning the electron and phonon transport properties of thermoelectric materials by nanostructuring has enabled improving their thermopower figure of merit. Three-dimensional topological insulators, including many bismuth chalcogenides, attract increasing attention for this purpose, as their topologically protected surface states are promising to further enhance the thermoelectric performance. While individual bismuth chalcogenide nanostructures have been studied with respect to their photothermoelectric properties, nanostructured p-n junctions of these compounds have not yet been explored...
January 11, 2017: Nano Letters
https://www.readbyqxmd.com/read/28071045/graphene-quantum-dots-embedded-in-bi2te3-nanosheets-to-enhance-thermoelectric-performance
#18
Shuankui Li, Tianju Fan, Xuerui Liu, Fusheng Liu, Hong Meng, Yidong Liu, Feng Pan
Novel Bi2Te3/graphene quantum dots (Bi2Te3/GQDs) hybrid nanosheets with a unique structure that GQDs are homogeneously embedded in the Bi2Te3 nanosheet matrix have been synthesized by a simple solution-based synthesis strategy. A significantly reduced thermal conductivity and enhanced powder factor are observed in the Bi2Te3/GQDs hybrid nanosheets, which is ascribed to the optimized thermoelectric transport properties of the Bi2Te3/GQDs interface. Furthermore, by varying the size of the GQDs, the thermoelectric performance of Bi2Te3/GQDs hybrid nanostructures could be further enhanced, which could be attributed to the optimization of the density and dispersion manner of the GQDs in the Bi2Te3 matrix...
February 1, 2017: ACS Applied Materials & Interfaces
https://www.readbyqxmd.com/read/28052049/thermoelectric-pyroelectric-hybrid-energy-generation-from-thermopower-waves-in-core-shell%C3%A2-structured-carbon-nanotube-pzt-nanocomposites
#19
Taehan Yeo, Hayoung Hwang, Dongjoon Shin, Byungseok Seo, Wonjoon Choi
There is an urgent need to develop a suitable energy source owing to the rapid development of various innovative devices using micro-nanotechnology. The thermopower wave (TW), which produces a high specific power during the combustion of solid fuel inside micro-nanostructure materials, is a unique energy source for unusual platforms that cannot use conventional energy sources. Here, we report on the significant enhancement of hybrid energy generation of pyroelectrics and thermoelectrics from TWs in carbon nanotube (CNT)-PZT (lead zirconate titanate, P(Z0...
January 4, 2017: Nanotechnology
https://www.readbyqxmd.com/read/27878169/in-situ-characterisation-of-nanostructured-multiphase-thermoelectric-materials-at-elevated-temperatures
#20
S Aminorroaya Yamini, D R G Mitchell, M Avdeev
Multiphase thermoelectric materials have recently attracted considerable attention due to the high thermoelectric efficiencies which can be achieved in these compounds compared to their single-phase counterparts. However, there is very little known on the structural evolution of these phases as a function of temperature. In this work we performed an in situ high temperature structural characterisation of recently reported high efficiency p-type multiphase (PbTe)0.65(PbS)0.25(PbSe)0.1 compounds by hot stage transmission electron microscopy and high-resolution neutron powder diffraction...
December 7, 2016: Physical Chemistry Chemical Physics: PCCP
keyword
keyword
113802
1
2
Fetch more papers »
Fetching more papers... Fetching...
Read by QxMD. Sign in or create an account to discover new knowledge that matter to you.
Remove bar
Read by QxMD icon Read
×

Search Tips

Use Boolean operators: AND/OR

diabetic AND foot
diabetes OR diabetic

Exclude a word using the 'minus' sign

Virchow -triad

Use Parentheses

water AND (cup OR glass)

Add an asterisk (*) at end of a word to include word stems

Neuro* will search for Neurology, Neuroscientist, Neurological, and so on

Use quotes to search for an exact phrase

"primary prevention of cancer"
(heart or cardiac or cardio*) AND arrest -"American Heart Association"