Read by QxMD icon Read

Multiple sclerosis molecular mechanism

Dusanka Skundric
This overview is aimed at reevaluating fundamental approaches of current MS therapies with focus being placed on their targeted underlying immune, molecular and cellular mechanisms. Currently used therapies are discussed in regard to their mechanisms of action, clinical accomplishments and unwanted side effects and complications. Special emphasis is given to current disease modifying therapies (DMT) and their actions at immune mechanisms of disease. Effects on DMT on CD4+Th1 cells and related cytokine and signaling pathways are discussed in more detail...
October 18, 2016: Central Nervous System Agents in Medicinal Chemistry
Yusuke Endo, Koutaro Yokote, Toshinori Nakayama
Chronic inflammation associated with obesity plays a major role in the development of metabolic diseases, cancer, and autoimmune diseases. Among Th subsets, Th17 cells are involved in the pathogenesis of autoimmune disorders such as psoriasis, rheumatoid arthritis, inflammatory bowel disease, steroid-resistant asthma, and multiple sclerosis. Accumulating data suggest that reciprocal interactions between the metabolic systems and immune system play pivotal roles in the pathogenesis of obesity-associated diseases...
October 18, 2016: Cellular and Molecular Life Sciences: CMLS
Susann Pankratz, Stefan Bittner, Beate E Kehrel, Harald F Langer, Christoph Kleinschnitz, Sven G Meuth, Kerstin Göbel
Beyond their indispensable role in hemostasis, platelets have shown to affect the development of inflammatory disorders, as they have been epidemiologically and mechanistically linked to diseases featuring an inflammatory reaction in inflammatory diseases like multiple sclerosis, rheumatoid arthritis and inflammatory bowel disorders. The identification of novel molecular mechanisms linking inflammation and to platelets has highlighted them as new targets for therapeutic interventions. In particular, genetic and pharmacological studies have identified an important role for platelets in neuroinflammation...
October 14, 2016: International Journal of Molecular Sciences
Naeim Ehtesham, Fariborz Khorvash, Majid Kheirollahi
MicroRNAs (miRNAs) are crucial to the immunopathogenesis of multiple sclerosis (MS). The mechanism of action of interferon beta (IFN-β) in relapsing-remitting (RR) MS patients is largely unknown. miR-145 and miR-20a-5p previously reported as diagnosis biomarker in treatment naïve RRMS patients and their expression after IFN-β therapy might be indicative of molecular mechanism of IFN-β. Cross-talking between JAK/STAT pathway and complementary pathways like MAPK is important in IFN-β signaling. Here, in order to clarify the ambiguous molecular mechanism of IFN-β and evaluate the potential use of them as a biomarker for monitoring of therapy, we investigated the expression of miR-145 and miR-20a-5p in blood sample of 15 treatment naïve RRMS patients, 15 IFN-β-treated RRMS patients, and 15 healthy volunteers (HVs)...
October 17, 2016: Journal of Molecular Neuroscience: MN
Juncal Fernández-Orth, Petra Ehling, Tobias Ruck, Susann Pankratz, Majella-Sophie Hofmann, Peter Landgraf, Daniela C Dieterich, Karl-Heinz Smalla, Thilo Kähne, Guiscard Seebohm, Thomas Budde, Heinz Wiendl, Stefan Bittner, Sven G Meuth
K2P 5.1 channels (also called TASK-2 or KCNK5) have already been shown to be relevant in the pathophysiology of autoimmune disease since they are known to be upregulated on peripheral and central T lymphocytes of multiple sclerosis (MS) patients. Moreover, overexpression of K2P 5.1 channels in vitro provokes enhanced T-cell effector functions. However, the molecular mechanisms regulating intracellular K2P 5.1 channel trafficking are unknown so far. Thus, the aim of the study is to elucidate the trafficking of K2P 5...
October 15, 2016: Traffic
Zhimin Ou, Yuxia Sun, Li Lin, Nachun You, Xue Liu, Hongchao Li, Yanchen Ma, Lei Cao, Ying Han, Min Liu, Yaqi Deng, Luming Yao, Q Richard Lu, Ying Chen
: Demyelinating diseases, such as multiple sclerosis, are known to result from acute or chronic injury to the myelin sheath and inadequate remyelination; however, the underlying molecular mechanisms remain unclear. Here, we performed genome occupancy analysis by chromatin immunoprecipitation sequencing in oligodendrocytes in response to lysolecithin-induced injury and found that Olig2 and its downstream target Gpr17 are critical factors in regulating oligodendrocyte survival. After injury to oligodendrocytes, Olig2 was significantly upregulated and transcriptionally targeted the Gpr17 locus...
October 12, 2016: Journal of Neuroscience: the Official Journal of the Society for Neuroscience
Shohei Murakami, Hozumi Motohashi
The KEAP1-NRF2 system is an inducible molecular mechanism enhancing transcriptions of several cytoprotective genes in response to xenobiotics and oxidative stress. Recently, the KEAP1-NRF2 system has been suggested to directly regulate a portion of the genes related to cell proliferation and differentiation. In hematopoietic cells, NRF2 activation plays a role in maintenance and cell fate determination of hematopoietic stem cells, as well as in maturation processes and homeostasis of megakaryocytes and erythrocytes...
2016: [Rinshō Ketsueki] the Japanese Journal of Clinical Hematology
Ryan B Griggs, Leonid M Yermakov, Keiichiro Susuki
Communication in the central nervous system (CNS) occurs through initiation and propagation of action potentials at excitable domains along axons. Action potentials generated at the axon initial segment (AIS) are regenerated at nodes of Ranvier through the process of saltatory conduction. Proper formation and maintenance of the molecular structure at the AIS and nodes are required for sustaining conduction fidelity. In myelinated CNS axons, paranodal junctions between the axolemma and myelinating oligodendrocytes delineate nodes of Ranvier and regulate the distribution and localization of specialized functional elements, such as voltage-gated sodium channels and mitochondria...
October 4, 2016: Neuroscience Research
Carine Savarin, Cornelia C Bergmann, David R Hinton, Stephen A Stohlman
Viral infections have long been implicated as triggers of autoimmune diseases, including multiple sclerosis (MS), a central nervous system (CNS) inflammatory demyelinating disorder. Epitope spreading, molecular mimicry, cryptic antigen, and bystander activation have been implicated as mechanisms responsible for activating self-reactive (SR) immune cells, ultimately leading to organ-specific autoimmune disease. Taking advantage of coronavirus JHM strain of mouse hepatitis virus (JHMV)-induced demyelination, this study demonstrates that the host also mounts counteractive measures to specifically limit expansion of endogenous SR T cells...
2016: Frontiers in Immunology
Pekka Poutiainen, Merja Jaronen, Francisco J Quintana, Anna-Liisa Brownell
Non-invasive molecular imaging techniques can enhance diagnosis to achieve successful treatment, as well as reveal underlying pathogenic mechanisms in disorders such as multiple sclerosis (MS). The cooperation of advanced multimodal imaging techniques and increased knowledge of the MS disease mechanism allows both monitoring of neuronal network and therapeutic outcome as well as the tools to discover novel therapeutic targets. Diverse imaging modalities provide reliable diagnostic and prognostic platforms to better achieve precision medicine...
2016: Frontiers in Molecular Neuroscience
Sherry Freiesleben, Michael Hecker, Uwe Klaus Zettl, Georg Fuellen, Leila Taher
MicroRNAs (miRNAs) have been reported to contribute to the pathophysiology of multiple sclerosis (MS), an inflammatory disorder of the central nervous system. Here, we propose a new consensus-based strategy to analyse and integrate miRNA and gene expression data in MS as well as other publically available data to gain a deeper understanding of the role of miRNAs in MS and to overcome the challenges posed by studies with limited patient sample sizes. We processed and analysed microarray datasets, and compared the expression of genes and miRNAs in the blood of MS patients and controls...
October 3, 2016: Scientific Reports
Yuriko Minegishi, Mao Nakayama, Daisuke Iejima, Kazuhide Kawase, Takeshi Iwata
Glaucoma is one of the leading causes of bilateral blindness, affecting nearly 57 million people worldwide. Glaucoma is characterized by a progressive loss of retinal ganglion cells and is often associated with intraocular pressure (IOP). Normal tension glaucoma (NTG), marked by normal IOP but progressive glaucoma, is incompletely understood. In 2002, Sarfarazi et al. identified FIP-2 gene mutations responsible for hereditary NTG, renaming this gene "optineurin" (OPTN). Further investigations by multiple groups worldwide showed that OPTN is involved in several critical cellular functions, such as NF-κB regulation, autophagy, and vesicle transport...
September 29, 2016: Progress in Retinal and Eye Research
Shivaprasad H Venkatesha, Kamal D Moudgil
Celastrol, a triterpenoid derived from traditional Chinese medicinal plants, has anti-inflammatory, antioxidant, and anticancer activities. Celastrol has shown preventive/therapeutic effects in experimental models of several chronic diseases. These include, chronic inflammatory and autoimmune diseases (e.g., rheumatoid arthritis, multiple sclerosis, systemic lupus erythematosus, inflammatory bowel disease, and psoriasis), neurodegenerative disorders (e.g., Alzheimer's disease, Parkinson's disease, and Amyotrophic lateral sclerosis), atherosclerosis, obesity, Type 2 diabetes, and cancer...
2016: Advances in Experimental Medicine and Biology
Luisa Klotz, Ivan Kuzmanov, Stephanie Hucke, Catharina C Gross, Vilmos Posevitz, Angela Dreykluft, Andreas Schulte-Mecklenbeck, Claudia Janoschka, Maren Lindner, Martin Herold, Nicholas Schwab, Isis Ludwig-Portugall, Christian Kurts, Sven G Meuth, Tanja Kuhlmann, Heinz Wiendl
Molecular mechanisms that determine lesion localization or phenotype variation in multiple sclerosis are mostly unidentified. Although transmigration of activated encephalitogenic T cells across the blood-brain barrier (BBB) is a crucial step in the disease pathogenesis of CNS autoimmunity, the consequences on brain endothelial barrier integrity upon interaction with such T cells and subsequent lesion formation and distribution are largely unknown. We made use of a transgenic spontaneous mouse model of CNS autoimmunity characterized by inflammatory demyelinating lesions confined to optic nerves and spinal cord (OSE mice)...
October 11, 2016: Proceedings of the National Academy of Sciences of the United States of America
C De Andres, M I García, H Goicoechea, M L Martínez-Ginés, J M García-Domínguez, M L Martín, F Romero-Delgado, A Benguría, M Sanjurjo, L A López-Fernández
Intravenous methylprednisolone (IVMP) is the gold standard treatment in acute relapses of multiple sclerosis. Knowing the response to IVMP in advance could facilitate earlier selection of patients for subsequent courses of therapy. However, molecular mechanisms and changes in gene expression induced by methylprednisolone remain unknown. The aim of the study was to identify in vivo differentially expressed genes in relapsing-remitting multiple sclerosis patients after 3-6 days of treatment with IVMP. For this purpose, whole-genome transcription profiling of CD4+ T lymphocytes was performed before and after treatment with IVMP in 8 relapsing-remitting multiple sclerosis patients during relapse using Human GE 4x44K v2 microarrays...
September 27, 2016: Pharmacogenomics Journal
Ying Wang, Ying Cao, Ashutosh K Mangalam, Yong Guo, Reghann G LaFrance-Corey, Jeffrey D Gamez, Pascal Aliihnui Atanga, Benjamin D Clarkson, Yuebo Zhang, Enfeng Wang, Ramcharan Singh Angom, Kirthica Dutta, Baoan Ji, Istvan Pirko, Claudia F Lucchinetti, Charles L Howe, Debabrata Mukhopadhyay
Inflammatory response of blood-brain barrier (BBB) endothelial cells plays an important role in pathogenesis of many central nervous system inflammatory diseases, including multiple sclerosis; however, the molecular mechanism mediating BBB endothelial cell inflammatory response remains unclear. In this study, we first observed that knockdown of neuropilin-1 (NRP1), a co-receptor of several structurally diverse ligands, suppressed interferon-γ (IFNγ)-induced C-X-C motif chemokine 10 expression and activation of STAT1 in brain microvascular endothelial cells in a Rac1-dependent manner...
October 15, 2016: Journal of Cell Science
M Haji Abdolvahab, M R K Mofrad, H Schellekens
Interferon beta (IFNβ) is a cytokine that is naturally produced by the immune system in response to biological and chemical stimuli. It signals by binding to the heterodimeric type I IFN receptor composed of the IFNAR1 and IFNAR2 chains, and regulates the expression of a plethora of genes by means of the classical JAK/STAT and other pathways. IFNβ is pleiotropic in that it elicits antiviral, antiproliferative, and immunomodulatory activities on numerous cell types. The biological activities underpin the mechanisms by which the protein is used to treat various diseases such as hepatitis C infection and multiple sclerosis...
2016: International Review of Cell and Molecular Biology
Sergey L Andreev, Valentina N Buneva, Georgy A Nevinsky
In the literature, there are no available data on how anti-DNA antibodies recognize DNA. In the present work, to study the molecular mechanism of DNA recognition by antibodies, we have used anti-DNA IgGs from blood sera of patients with multiple sclerosis. A stepwise increase in ligand complexity approach was used to estimate the relative contributions of virtually every nucleotide unit of different single- (ss) and double-stranded (ds) oligonucleotides to their affinity for IgG fraction having high affinity to DNA-cellulose...
August 25, 2016: Journal of Molecular Recognition: JMR
Alexander Ulges, Esther J Witsch, Gautam Pramanik, Matthias Klein, Katharina Birkner, Ulrike Bühler, Beatrice Wasser, Felix Luessi, Natascha Stergiou, Sarah Dietzen, Till-Julius Brühl, Toszka Bohn, Georg Bündgen, Horst Kunz, Ari Waisman, Hansjörg Schild, Edgar Schmitt, Frauke Zipp, Tobias Bopp
T helper 17 (TH17) cells represent a discrete TH cell subset instrumental in the immune response to extracellular bacteria and fungi. However, TH17 cells are considered to be detrimentally involved in autoimmune diseases like multiple sclerosis (MS). In contrast to TH17 cells, regulatory T (Treg) cells were shown to be pivotal in the maintenance of peripheral tolerance. Thus, the balance between Treg cells and TH17 cells determines the severity of a TH17 cell-driven disease and therefore is a promising target for treating autoimmune diseases...
September 6, 2016: Proceedings of the National Academy of Sciences of the United States of America
Helena S Domingues, Camila C Portugal, Renato Socodato, João B Relvas
Oligodendrocytes are the myelinating glia of the central nervous system. Myelination of axons allows rapid saltatory conduction of nerve impulses and contributes to axonal integrity. Devastating neurological deficits caused by demyelinating diseases, such as multiple sclerosis, illustrate well the importance of the process. In this review, we focus on the positive and negative interactions between oligodendrocytes, astrocytes, and microglia during developmental myelination and remyelination. Even though many lines of evidence support a crucial role for glia crosstalk during these processes, the nature of such interactions is often neglected when designing therapeutics for repair of demyelinated lesions...
2016: Frontiers in Cell and Developmental Biology
Fetch more papers »
Fetching more papers... Fetching...
Read by QxMD. Sign in or create an account to discover new knowledge that matter to you.
Remove bar
Read by QxMD icon Read

Search Tips

Use Boolean operators: AND/OR

diabetic AND foot
diabetes OR diabetic

Exclude a word using the 'minus' sign

Virchow -triad

Use Parentheses

water AND (cup OR glass)

Add an asterisk (*) at end of a word to include word stems

Neuro* will search for Neurology, Neuroscientist, Neurological, and so on

Use quotes to search for an exact phrase

"primary prevention of cancer"
(heart or cardiac or cardio*) AND arrest -"American Heart Association"