Read by QxMD icon Read

Laser cooling quantum physics

Valdis Blūms, Marcin Piotrowski, Mahmood I Hussain, Benjamin G Norton, Steven C Connell, Stephen Gensemer, Mirko Lobino, Erik W Streed
Forces drive all physical interactions. High-sensitivity measurement of the effect of forces enables the quantitative investigation of physical phenomena. Laser-cooled trapped atomic ions are a well-controlled quantum system whose low mass, strong Coulomb interaction, and readily detectable fluorescence signal make them a favorable platform for precision metrology. We demonstrate a three-dimensional sub-attonewton sensitivity force sensor based on a super-resolution imaging of a single trapped ion. The force is detected by measuring the ion's displacement in three dimensions with nanometer precision...
March 2018: Science Advances
Masaki Hori
The Atomic Spectroscopy and Collisions Using Slow Antiprotons (ASACUSA) collaboration is currently carrying out laser spectroscopy experiments on antiprotonic helium [Formula: see text] atoms at CERN's Antiproton Decelerator facility. Two-photon spectroscopic techniques have been employed to reduce the Doppler width of the measured [Formula: see text] resonance lines, and determine the atomic transition frequencies to a fractional precision of 2.3-5 parts in 109 More recently, single-photon spectroscopy of buffer-gas cooled [Formula: see text] has reached a similar precision...
March 28, 2018: Philosophical Transactions. Series A, Mathematical, Physical, and Engineering Sciences
Amelia Zutz, David J Nesbitt
This study presents first results on angle-resolved, inelastic collision dynamics of thermal and hyperthermal molecular beams of NO at gas-liquid interfaces. Specifically, a collimated incident beam of supersonically cooled NO ((2)Π1/2, J = 0.5) is directed toward a series of low vapor pressure liquid surfaces ([bmim][Tf2N], squalane, and PFPE) at θinc = 45(1)°, with the scattered molecules detected with quantum state resolution over a series of final angles (θs = -60°, -30°, 0°, 30°, 45°, and 60°) via spatially filtered laser induced fluorescence...
August 7, 2017: Journal of Chemical Physics
L Hollberg, E H Cornell, A Abdelrahmann
Atomic clocks based on laser-cooled atoms have made tremendous advances in both accuracy and stability. However, advanced clocks have not found their way into widespread use because there has been little need for such high performance in real-world/commercial applications. The drive in the commercial world favours smaller, lower-power, more robust compact atomic clocks that function well in real-world non-laboratory environments. Although the high-performance atomic frequency references are useful to test Einstein's special relativity more precisely, there are not compelling scientific arguments to expect a breakdown in special relativity...
August 6, 2017: Philosophical Transactions. Series A, Mathematical, Physical, and Engineering Sciences
Chin-Wen Chou, Christoph Kurz, David B Hume, Philipp N Plessow, David R Leibrandt, Dietrich Leibfried
Laser cooling and trapping of atoms and atomic ions has led to advances including the observation of exotic phases of matter, the development of precision sensors and state-of-the-art atomic clocks. The same level of control in molecules could also lead to important developments such as controlled chemical reactions and sensitive probes of fundamental theories, but the vibrational and rotational degrees of freedom in molecules pose a challenge for controlling their quantum mechanical states. Here we use quantum-logic spectroscopy, which maps quantum information between two ion species, to prepare and non-destructively detect quantum mechanical states in molecular ions...
May 10, 2017: Nature
Hao-Kun Li, Erik Urban, Crystal Noel, Alexander Chuang, Yang Xia, Anthony Ransford, Boerge Hemmerling, Yuan Wang, Tongcang Li, Hartmut Häffner, Xiang Zhang
We crystallize up to 15 ^{40}Ca^{+} ions in a ring with a microfabricated silicon surface Paul trap. Delocalization of the Doppler laser-cooled ions shows that the translational symmetry of the ion ring is preserved at millikelvin temperatures. By characterizing the collective motion of the ion crystals, we identify homogeneous electric fields as the dominant symmetry-breaking mechanism at this energy scale. With increasing ion numbers, such detrimental effects are reduced. We predict that, with only a ten-ion ring, uncompensated homogeneous fields will not break the translational symmetry of the rotational ground state...
February 3, 2017: Physical Review Letters
Jeremy B Clark, Florent Lecocq, Raymond W Simmonds, José Aumentado, John D Teufel
Quantum fluctuations of the electromagnetic vacuum produce measurable physical effects such as Casimir forces and the Lamb shift. They also impose an observable limit-known as the quantum backaction limit-on the lowest temperatures that can be reached using conventional laser cooling techniques. As laser cooling experiments continue to bring massive mechanical systems to unprecedentedly low temperatures, this seemingly fundamental limit is increasingly important in the laboratory. Fortunately, vacuum fluctuations are not immutable and can be 'squeezed', reducing amplitude fluctuations at the expense of phase fluctuations...
January 11, 2017: Nature
Clemens Schäfermeier, Hugo Kerdoncuff, Ulrich B Hoff, Hao Fu, Alexander Huck, Jan Bilek, Glen I Harris, Warwick P Bowen, Tobias Gehring, Ulrik L Andersen
Laser cooling is a fundamental technique used in primary atomic frequency standards, quantum computers, quantum condensed matter physics and tests of fundamental physics, among other areas. It has been known since the early 1990s that laser cooling can, in principle, be improved by using squeezed light as an electromagnetic reservoir; while quantum feedback control using a squeezed light probe is also predicted to allow improved cooling. Here we show the implementation of quantum feedback control of a micro-mechanical oscillator using squeezed probe light...
November 29, 2016: Nature Communications
M Alharbi, A Husakou, M Chafer, B Debord, F Gérôme, F Benabid
Trapping or cooling molecules has rallied a long-standing effort for its impact in exploring new frontiers in physics and in finding new phase of matter for quantum technologies. Here we demonstrate a system for light-trapping molecules and stimulated Raman scattering based on optically self-nanostructured molecular hydrogen in hollow-core photonic crystal fibre. A lattice is formed by a periodic and ultra-deep potential caused by a spatially modulated Raman saturation, where Raman-active molecules are strongly localized in a one-dimensional array of nanometre-wide sections...
2016: Nature Communications
L L Yan, W Wan, L Chen, F Zhou, S J Gong, X Tong, M Feng
Phase transitions have been a research focus in many-body physics over past decades. Cold ions, under strong Coulomb repulsion, provide a repealing paradigm of exploring phase transitions in stable confinement by electromagnetic field. We demonstrate various conformations of up to sixteen laser-cooled (40)Ca(+) ion crystals in a home-built surface-electrode trap, where besides the usually mentioned structural phase transition from the linear to the zigzag, two additional phase transitions to more complicated two-dimensional configurations are identified...
2016: Scientific Reports
Fabian Wolf, Yong Wan, Jan C Heip, Florian Gebert, Chunyan Shi, Piet O Schmidt
Precision laser spectroscopy of cold and trapped molecular ions is a powerful tool in fundamental physics--used, for example, in determining fundamental constants, testing for their possible variation in the laboratory, and searching for a possible electric dipole moment of the electron. However, the absence of cycling transitions in molecules poses a challenge for direct laser cooling of the ions, and for controlling and detecting their quantum states. Previously used state-detection techniques based on photodissociation or chemical reactions are destructive and therefore inefficient, restricting the achievable resolution in laser spectroscopy...
February 25, 2016: Nature
T R Tan, J P Gaebler, Y Lin, Y Wan, R Bowler, D Leibfried, D J Wineland
Precision control over hybrid physical systems at the quantum level is important for the realization of many quantum-based technologies. In the field of quantum information processing (QIP) and quantum networking, various proposals discuss the possibility of hybrid architectures where specific tasks are delegated to the most suitable subsystem. For example, in quantum networks, it may be advantageous to transfer information from a subsystem that has good memory properties to another subsystem that is more efficient at transporting information between nodes in the network...
December 17, 2015: Nature
Stefan Kuhn, Peter Asenbaum, Alon Kosloff, Michele Sclafani, Benjamin A Stickler, Stefan Nimmrichter, Klaus Hornberger, Ori Cheshnovsky, Fernando Patolsky, Markus Arndt
Optical control of nanoscale objects has recently developed into a thriving field of research with far-reaching promises for precision measurements, fundamental quantum physics and studies on single-particle thermodynamics. Here, we demonstrate the optical manipulation of silicon nanorods in high vacuum. Initially, we sculpture these particles into a silicon substrate with a tailored geometry to facilitate their launch into high vacuum by laser-induced mechanical cleavage. We manipulate and trace their center-of-mass and rotational motion through the interaction with an intense intracavity field...
August 12, 2015: Nano Letters
L Schmöger, O O Versolato, M Schwarz, M Kohnen, A Windberger, B Piest, S Feuchtenbeiner, J Pedregosa-Gutierrez, T Leopold, P Micke, A K Hansen, T M Baumann, M Drewsen, J Ullrich, P O Schmidt, J R Crespo López-Urrutia
Control over the motional degrees of freedom of atoms, ions, and molecules in a field-free environment enables unrivalled measurement accuracies but has yet to be applied to highly charged ions (HCIs), which are of particular interest to future atomic clock designs and searches for physics beyond the Standard Model. Here, we report on the Coulomb crystallization of HCIs (specifically (40)Ar(13+)) produced in an electron beam ion trap and retrapped in a cryogenic linear radiofrequency trap by means of sympathetic motional cooling through Coulomb interaction with a directly laser-cooled ensemble of Be(+) ions...
March 13, 2015: Science
Russell A Hart, Pedro M Duarte, Tsung-Lin Yang, Xinxing Liu, Thereza Paiva, Ehsan Khatami, Richard T Scalettar, Nandini Trivedi, David A Huse, Randall G Hulet
Ultracold atoms in optical lattices have great potential to contribute to a better understanding of some of the most important issues in many-body physics, such as high-temperature superconductivity. The Hubbard model--a simplified representation of fermions moving on a periodic lattice--is thought to describe the essential details of copper oxide superconductivity. This model describes many of the features shared by the copper oxides, including an interaction-driven Mott insulating state and an antiferromagnetic (AFM) state...
March 12, 2015: Nature
J F Barry, D J McCarron, E B Norrgard, M H Steinecker, D DeMille
Laser cooling and trapping are central to modern atomic physics. The most used technique in cold-atom physics is the magneto-optical trap (MOT), which combines laser cooling with a restoring force from radiation pressure. For a variety of atomic species, MOTs can capture and cool large numbers of particles to ultracold temperatures (less than ∼1 millikelvin); this has enabled advances in areas that range from optical clocks to the study of ultracold collisions, while also serving as the ubiquitous starting point for further cooling into the regime of quantum degeneracy...
August 21, 2014: Nature
G Rosi, F Sorrentino, L Cacciapuoti, M Prevedelli, G M Tino
About 300 experiments have tried to determine the value of the Newtonian gravitational constant, G, so far, but large discrepancies in the results have made it impossible to know its value precisely. The weakness of the gravitational interaction and the impossibility of shielding the effects of gravity make it very difficult to measure G while keeping systematic effects under control. Most previous experiments performed were based on the torsion pendulum or torsion balance scheme as in the experiment by Cavendish in 1798, and in all cases macroscopic masses were used...
June 26, 2014: Nature
Kyle S Hardman, Shayne Bennetts, John E Debs, Carlos C N Kuhn, Gordon D McDonald, Nick Robins
Since their development in the late 1980s, cheap, reliable external cavity diode lasers (ECDLs) have replaced complex and expensive traditional dye and Titanium Sapphire lasers as the workhorse laser of atomic physics labs. Their versatility and prolific use throughout atomic physics in applications such as absorption spectroscopy and laser cooling makes it imperative for incoming students to gain a firm practical understanding of these lasers. This publication builds upon the seminal work by Wieman, updating components, and providing a video tutorial...
2014: Journal of Visualized Experiments: JoVE
A K Hansen, O O Versolato, L Kłosowski, S B Kristensen, A Gingell, M Schwarz, A Windberger, J Ullrich, J R Crespo López-Urrutia, M Drewsen
The preparation of cold molecules is of great importance in many contexts, such as fundamental physics investigations, high-resolution spectroscopy of complex molecules, cold chemistry and astrochemistry. One versatile and widely applied method to cool molecules is helium buffer-gas cooling in either a supersonic beam expansion or a cryogenic trap environment. Another more recent method applicable to trapped molecular ions relies on sympathetic translational cooling, through collisional interactions with co-trapped, laser-cooled atomic ions, into spatially ordered structures called Coulomb crystals, combined with laser-controlled internal-state preparation...
April 3, 2014: Nature
Yong Wan, Florian Gebert, Jannes B Wübbena, Nils Scharnhorst, Sana Amairi, Ian D Leroux, Börge Hemmerling, Niels Lörch, Klemens Hammerer, Piet O Schmidt
Precision spectroscopy of atomic and molecular ions offers a window to new physics, but is typically limited to species with a cycling transition for laser cooling and detection. Quantum logic spectroscopy has overcome this limitation for species with long-lived excited states. Here we extend quantum logic spectroscopy to fast, dipole-allowed transitions and apply it to perform an absolute frequency measurement. We detect the absorption of photons by the spectroscopically investigated ion through the photon recoil imparted on a co-trapped ion of a different species, on which we can perform efficient quantum logic detection techniques...
2014: Nature Communications
Fetch more papers »
Fetching more papers... Fetching...
Read by QxMD. Sign in or create an account to discover new knowledge that matter to you.
Remove bar
Read by QxMD icon Read

Search Tips

Use Boolean operators: AND/OR

diabetic AND foot
diabetes OR diabetic

Exclude a word using the 'minus' sign

Virchow -triad

Use Parentheses

water AND (cup OR glass)

Add an asterisk (*) at end of a word to include word stems

Neuro* will search for Neurology, Neuroscientist, Neurological, and so on

Use quotes to search for an exact phrase

"primary prevention of cancer"
(heart or cardiac or cardio*) AND arrest -"American Heart Association"