Read by QxMD icon Read


Kai Wang, Shuaifeng Li, Tesfaye Worku, Xingjie Hao, Liaohan Yang, Shujun Zhang
Porcine reproductive and respiratory syndrome virus (PRRSV) is the leading virus known to cause massive economic loss in pig industry worldwide. In our previous study, transcriptional profiling of PRRSV-infected lung tissue of Tongcheng and landrane pigs, which have highly pathogenic PRRSV (HP-PRRSV) susceptibility differences, showed differential expression of Rab11a. The small GTPase Rab11a regulates intracellular membrane trafficking events involved in autophagy. However, the involvement of convergence of endosomal Rab11a and autophagy pathways during PRRSV infection is still unclear...
August 16, 2017: Biochemical and Biophysical Research Communications
Ke Liu, Yuming Li, Bin Zhou, Feifei Wang, Beili Huan, Donghua Shao, Jianchao Wei, Yafeng Qiu, Beibei Li, Yingjuan Qian, Yong-Sam Jung, Denian Miao, Guangzhi Tong, Zhiyong Ma
Porcine Reproductive and Respiratory Syndrome (PRRS), which is caused by Porcine Reproductive and Respiratory Syndrome Virus (PRRSV) infection, has caused substantial economic losses for the global swine industry. To date, there are limited commercially available measures to control the spread of PRRSV. The available vaccines are unstable and there is no anti-PRRSV therapeutic available. Therefore, this study designed a novel recombinant antiviral protein that included a novel polypeptide that binds to the PRRSV polymerase (p9), the transduction ability of the HIV TAT, and the nucleotide degradation activity of interferon stimulated gene 20 (ISG20)...
August 10, 2017: Research in Veterinary Science
Alyssa B Evans, Pengfei Dong, Hyelee Loyd, Jianqiang Zhang, George A Kraus, Susan Carpenter
Porcine reproductive and respiratory syndrome virus (PRRSV) is the etiological agent of PRRS, an economically significant disease of swine worldwide. PRRSV is poorly controlled by the currently available vaccines, and alternative control strategies are needed to help prevent the continual circulation of the virus. Previously, we developed a synthetic route for the natural compound atractylodinol and demonstrated anti-PRRSV activity in vitro. However, the synthetic route was inefficient and the yield was poor...
August 12, 2017: Antiviral Research
Bastian Thaa, Susanne Kaufer, Sara A Neumann, Bernadett Peibst, Hans Nauwynck, Eberhard Krause, Michael Veit
GP5 and M, the major membrane proteins of porcine reproductive and respiratory syndrome virus (PRRSV), are the driving force for virus budding and a target for antibodies. We studied co-translational processing of GP5 from an European PRRSV-1 strain. Using mass spectrometry, we show that in virus particles of a Lelystad variant, the signal peptide of GP5 was absent due to cleavage between glycine-34 and asparagine-35. This cleavage site removes an epitope for a neutralizing monoclonal antibody, but leaves intact another epitope recognized by neutralizing pig sera...
August 12, 2017: Virus Research
Mengmeng Zhao, Bo Wan, Huawei Li, Jian He, Xinxin Chen, Linjian Wang, Yinbiao Wang, Sha Xie, Songlin Qiao, Gaiping Zhang
Porcine reproductive and respiratory syndrome virus (PRRSV) is acknowledged a fulminating infectious pathogen affecting the pig farming industry, and current vaccines and drugs could hardly inhibit this virus. The 2', 5'-oligoadenylate synthetase (OASs) have antiviral activities, but the role(s) played by porcine OAS2 in protection against PRRSV infection are unknown. Here we found that endogenous expression of the porcine OAS2 gene could be promoted by interferon (IFN)-beta or PRRSV infection in porcine alveolar macrophages...
August 10, 2017: Microbial Pathogenesis
Jung-Ju Kim, Jung-Ah Lee, Hwi-Yeon Choi, Jang-Hyuck Han, Won Huh, Jae-Ho Pi, Jung-Keun Lee, Sangshin Park, Ki-Hyun Cho, Joong-Bok Lee
Porcine reproductive and respiratory syndrome virus (PRRSV) causes major economic losses in the swine industry worldwide. Vaccination is the most effective method to control the disease. In a previous study, a chimeric PRRSV named as K418 which had a genome composed of ORF 1 from the FL12 strain and ORF 2-7 from the Korean representative LMY strain was created. We constructed K418DM, K418 with deglycosylated glycoprotein 5 (GP5), to improve its humoral immunity. In the follow-up on in vivo and in vitro virological and serological tests, no back mutation in amino acids of GP5 associated with deglycosylation was shown after 9 passages on MARC-145 cells, whereas only one case of back mutation was detected after single passage in pig...
August 9, 2017: Vaccine
Chengbao Wang, Han Meng, Yujin Gao, Hui Gao, Kangkang Guo, Fernando Almazan, Isabel Sola, Luis Enjuanes, Yanming Zhang, Levon Abrahamyan
In order to gain insight into the role of the transcription regulatory sequences (TRSs) in the regulation of gene expression and replication of porcine reproductive and respiratory syndrome virus (PRRSV), the enhanced green fluorescent protein (EGFP) gene, under the control of the different structural gene TRSs, was inserted between the N gene and 3'-UTR of the PRRSV genome and EGFP expression was analyzed for each TRS. TRSs of all the studied structural genes of PRRSV positively modulated EGFP expression at different levels...
August 10, 2017: Veterinary Research
Keli Yang, Yongxiang Tian, Danna Zhou, Zhengying Duan, Rui Guo, Zewen Liu, Fangyan Yuan, Wei Liu
Outbreaks of highly pathogenic porcine reproductive and respiratory syndrome virus (HP-PRRSV) have led to large economic losses in China. The attenuated vaccine (HP-PRRSV JXA1-R) was used to control HP-PRRSV. However, in recent years, co-infection with classical PRRSV (C-PRRSV), HP-PRRSV, and/or HP-PRRSV JXA1-R has been increasing in China, resulting in a significant impact on PRRSV diagnostics and management. To facilitate rapid discrimination of HP-PRRSV JXA1-R from HP-PRRSV and C-PRRSV, a multiplex RT-PCR assay for the visual detection of HP-PRRSV JXA1-R, HP-PRRSV, and C-PRRSV was established and evaluated with reference PRRSV strains and clinical samples...
August 1, 2017: Viruses
Zhenhai Chen, Emily Collin, Lalitha Peddireddi, Travis Clement, Phillip Gauger, Ben M Hause
Porcine reproductive and respiratory syndrome (PRRS) is one of the most economically important diseases in swine caused by porcine reproductive and respiratory syndrome virus (PRRSV). Genome sequences of sixty-six PRRSV strains were obtained using metagenomic sequencing of serum samples collected in the U.S. in 2014 to explore contemporary genetic diversity. Phylogenetic analysis of the genes encoding the envelope proteins identified four to eight distinct lineages with >87% intraclade identity. To explore the effect of the observed genetic diversity on antigenicity, the genome regions encoding either GP2a-GP3-GP4 or GP5-M in strain SD95-21 were replaced with alleles from each of eight distinct PRRSV strains using reverse genetics...
July 26, 2017: Research in Veterinary Science
Michael C Rahe, Kevin L Gustafson, Michael P Murtaugh
Immunological memory is elicited after either vaccination or natural exposure to a pathogen and is essential for protection against re-exposure. Despite its critical importance, the ability to interrogate the veterinary animal memory immune response has long been hindered by a paucity of tools to assess immunological memory. As a result, the evaluation and analysis of protective immune responses that predict immune protection in food and fiber animals and facilitate vaccine development are obstructed. To fill this gap in knowledge in swine, we created a B cell tetramer to porcine reproductive and respiratory syndrome virus (PRRSV) nonstructural protein 7 (nsp7) to efficiently and effectively investigate the memory B cell response, a hallmark of anti-viral immunity...
July 31, 2017: Viral Immunology
Likai Ji, Xiang Zhou, Wan Liang, Jianjian Liu, Bang Liu
Porcine reproductive and respiratory syndrome virus (PRRSV) causes severe losses in the global pig industry. In the present study, we investigated the molecular characterization of porcine interferon stimulated gene 12a (ISG12A) and confirmed its anti-PRRSV ability for the first time. We found that porcine ISG12A was localized in mitochondria and significantly decreased the number of cells in G2/S phase. Porcine ISG12A mRNA was up-regulated in cells/tissues of Tongcheng (TC) pigs and Large White (LW) pigs after PRRSV challenge...
July 25, 2017: International Journal of Molecular Sciences
Chantale Provost, Glenn Hamonic, Carl A Gagnon, François Meurens
In the pig, respiratory co-infections involving various pathogens are far more frequent than single infections. Amongst respiratory viruses, swine influenza type A virus (swIAV) and porcine reproductive and respiratory syndrome virus (PRRSV) are frequently associated. Previously, we performed co-infections with swIAV and PRRSV in porcine alveolar macrophages (PAM) and precision cut lung slices (PCLS). With these two approaches it was practically impossible to have co-infections of the same cells as the main target cell of swIAV is the epithelial cell while the main target of PRRSV is the PAM...
August 2017: Veterinary Microbiology
Lei Zhou, Beina Yang, Lei Xu, Huan Jin, Xinna Ge, Xin Guo, Jun Han, Hanchun Yang
Porcine reproductive and respiratory syndrome reproductive virus is a devastating pathogen causing tremendous economic losses to swine production worldwide. Emergence of novel and variant PRRSV strains always leads to variable protection efficacy of modified-live virus (MLV) vaccines. Prevalence of PRRSV NADC30-like recently emerging in China has brought about clinical outbreaks of the disease. In the present study, the pathogenicity of a NADC30-like strain CHsx1401 for piglets was analyzed, and the potential cross-protective efficacy of three MLV vaccines including two commercial MLV vaccines and an attenuated low pathogenic PRRSV against this virus was further evaluated in piglets...
August 2017: Veterinary Microbiology
Shuhua Fan, Yongli Wang, Song Wang, Xian Wang, Yanan Wu, Zibin Li, Nianzhi Zhang, Chun Xia
The swine lymphocyte antigen class I (SLA I) is a highly polymorphic gene superfamily that plays an important role in swine anti-viral immune responses. However, an understanding of the highly variable sites and peptide-binding specificities of SLA I molecule is limited. In this study, a total of 27 SLA I alleles were identified from 3 Tibetan wild boars and 3 Heishan pigs. The phylogenetic relationship between the Tibetan wild boar and other breeds was analyzed using bioinformatics methods, and the highly variable sites were noted in the three dimensional structures of SLA I...
July 24, 2017: Molecular Immunology
Nanhua Chen, Qiaorong Liu, Mingming Qiao, Xiaoyu Deng, Xizhao Chen, Ming Sun
Genotype 1 porcine reproductive and respiratory syndrome virus (PRRSV 1) have been continuously isolated in China in recent years. Complete genome sequences of these isolates are important to investigate the prevalence and evolution of Chinese PRRSV 1. Herein, we describe the isolation of a novel PRRSV 1 isolate, denominated HLJB1, in the Heilongjiang province of China. Complete genome sequencing of HLJB1 showed that it shares 90.66% and 58.21% nucleotide identities with PRRSV 1 and 2 prototypic strains Lelystad virus and ATCC VR-2332, respectively...
July 23, 2017: Infection, Genetics and Evolution
Víctor Neira, Barbara Brito, Juan Mena, Marie Culhane, Maria Ignacia Apel, Vanessa Max, Patricio Perez, Valentina Moreno, Christian Mathieu, Magdalena Johow, Catalina Badia, Montserrat Torremorell, Rafael Medina, Rene Ortega
Porcine reproductive and respiratory syndrome (PRRS) is endemic in most pork producing countries. In Chile, eradication of PRRS virus (PRRSV) was successfully achieved in 2009 as a result of the combined efforts of producers and the animal health authorities. In October 2013, after several years without detecting PRRSV under surveillance activities, suspected cases were confirmed on a commercial swine farm. Here, we describe the PRRS epidemic in Chile between October 2013 and April 2015, and we studied the origins and spread of PRRSV throughout the country using official surveillance data and Bayesian phylogenetic analysis...
2017: PloS One
Jiexiong Xie, Isaura Christiaens, Bo Yang, Wander Van Breedam, Tingting Cui, Hans J Nauwynck
In recent years, several entry mediators have been characterized for porcine reproductive and respiratory syndrome virus (PRRSV). Porcine sialoadhesin [pSn, also known as sialic acid-binding immunoglobulin-type lectin (Siglec-1)] and porcine CD163 (pCD163) have been identified as the most important host entry mediators that can fully coordinate PRRSV infection into macrophages. However, recent isolates have not only shown a tropism for sialoadhesin-positive cells, but also for sialoadhesin-negative cells. This observation might be partly explained by the existence of additional receptors that can support PRRSV binding and entry...
July 26, 2017: Journal of General Virology
Pingsheng Hu, Xiaoming Chen, Lihong Huang, Shukai Liu, Fuyu Zang, Jinchao Xing, Youyue Zhang, Jiaqi Liang, Guihong Zhang, Ming Liao, Wenbao Qi
In the swine industry, porcine reproductive and respiratory syndrome (PRRS) is a highly contagious disease which causes heavy economic losses worldwide. Effective prevention and disease control is an important issue. In this study, we described the construction of a Japanese encephalitis virus (JEV) DNA-based replicon with a cytomegalovirus (CMV) promoter based on the genome of Japanese encephalitis live vaccine virus SA14-14-2, which is capable of offering a potentially novel way to develop and produce vaccines against a major pathogen of global health...
2017: PeerJ
Linyang Yu, Pandeng Zhao, Jianguo Dong, Yanling Liu, Leyi Zhang, Pengshuai Liang, Lei Wang, Changxu Song
BACKGROUND: Porcine reproductive and respiratory syndrome (PRRS) has leaded to an enormous loss per year to the swine industry, its etiology porcine reproductive and respiratory syndrome virus (PRRSV) is a highly mutated virus in pigs. To fully understand the genetic characteristics of PRRSV genome in South China, this study collected the lung samples infected with PRRSV in Guangdong and Hainan province from 2014 to 2015 and tried to isolate the PRRSV. Finally, the complete genomes of isolated strains were sequenced and analyzed...
July 24, 2017: Virology Journal
Laura C Miller, Damarius S Fleming, Xiangdong Li, Darrell O Bayles, Frank Blecha, Yongming Sang
Monocyte-derived DCs (mDCs) are major target cells in porcine reproductive and respiratory syndrome virus (PRRSV) pathogenesis; however, the plasticity of mDCs in response to activation stimuli and PRRSV infection remains unstudied. In this study, we polarized mDCs, and applied genome-wide transcriptomic analysis and predicted protein-protein interaction networks to compare signature genes involved in mDCs activation and response to PRRSV infection. Porcine mDCs were polarized with mediators for 30 hours, then mock-infected, infected with PRRSV strain VR2332, or a highly pathogenic PRRSV strain (rJXwn06), for 5 h...
2017: PloS One
Fetch more papers »
Fetching more papers... Fetching...
Read by QxMD. Sign in or create an account to discover new knowledge that matter to you.
Remove bar
Read by QxMD icon Read

Search Tips

Use Boolean operators: AND/OR

diabetic AND foot
diabetes OR diabetic

Exclude a word using the 'minus' sign

Virchow -triad

Use Parentheses

water AND (cup OR glass)

Add an asterisk (*) at end of a word to include word stems

Neuro* will search for Neurology, Neuroscientist, Neurological, and so on

Use quotes to search for an exact phrase

"primary prevention of cancer"
(heart or cardiac or cardio*) AND arrest -"American Heart Association"