Read by QxMD icon Read

Cardiomyocyte Cell Culture

Meiling Yan, Kankai Chen, Li He, Shuai Li, Dong Huang, Jingbo Li
BACKGROUND/AIMS: Hyperuricemia is associated with an increased risk for multiple cardiovascular diseases, but the underlying mechanisms remain largely elusive. Calpain-1 is a protease that is implicated in several pathological conditions that affect the heart. The aim of this current study was to test the effects of uric acid (UA) on cardiomyocyte survival and cardiac function and to investigate the role of calpain-1 in the UA-induced effects in the heart and their underlying mechanisms...
March 7, 2018: Cellular Physiology and Biochemistry
Xiaoni Ai, Wenbo Lu, Kewu Zeng, Chun Li, Yong Jiang, Peng-Fei Tu
Emerging awareness of cardiac macrophages' role in inflammation after myocardial infarction indicates that overabundant pro-inflammatory macrophages induce accentuated myocardial injury. The investigation of macrophages-cardiomyocytes interaction and inflammation-induced dynamic damage in myocardial infarction, especially in a spatiotemporally controlled manner, remains a huge challenge. Here, we developed an in vitro model using a microfluidic co-culture system to mimic inflammatory cardiac injury. To our knowledge, on-chip pathological models focused on inflammation-induced myocardial injury have not been reported...
March 13, 2018: Analytical Chemistry
Valentina Prando, Francesca Da Broi, Mauro Franzoso, Anna Pia Plazzo, Nicola Pianca, Maura Francolini, Cristina Basso, Matthew W Kay, Tania Zaglia, Marco Mongillo
AIM: Cardiac sympathetic neurons (SNs) finely tune the rate and strength of heart contractions to match the blood demand, both at rest and during acute stresses, through the release of norepinephrine (NE). Junctional sites at the interface between the two cell types have been observed, but whether direct neuro-cardiac coupling has a role in heart physiology has not thus far been clearly demonstrated. METHODS AND RESULTS: We investigated the dynamics of SN/cardiomyocyte intercellular signalling, both by FRET-based imaging of cAMP in co-cultures, as a readout of cardiac β-AR activation, and in vivo, using optogenetics in transgenic mice with SN-specific expression of Channelrhodopsin-2...
March 10, 2018: Journal of Physiology
Aditi Jain, Jafar Hasan, Perumal Arumugam Desingu, Nagalingam R Sundaresan, Kaushik Chatterjee
Neonatal cardiomyocytes cultured on flat surfaces are commonly used as a model to study cardiac failure of diverse origin. A major drawback of such a system is that the cardiomyocytes do not exhibit alignment, organization and calcium transients, similar to the native heart. Therefore, there is a need to develop in vitro platforms that recapitulate the cellular microenvironment of the murine heart as organotypic models to study cardiovascular diseases. In this study, we report an engineered platform that mimics cardiac cell organization and function of the heart...
February 27, 2018: Colloids and Surfaces. B, Biointerfaces
Lei Wang, Yun-Long Zhang, Qiu-Yue Lin, Yu Liu, Xu-Min Guan, Xiao-Lei Ma, Hua-Jun Cao, Ying Liu, Jie Bai, Yun-Long Xia, Jie Du, Hui-Hua Li
Aims: Chemokine-mediated monocyte infiltration into the damaged heart represents an initial step in inflammation during cardiac remodelling. Our recent study demonstrates a central role for chemokine receptor CXCR2 in monocyte recruitment and hypertension; however, the role of chemokine CXCL1 and its receptor CXCR2 in angiotensin II (Ang II)-induced cardiac remodelling remain unknown. Methods and results: Angiotensin II (1000 ng kg-1 min-1) was administrated to wild-type (WT) mice treated with CXCL1 neutralizing antibody or CXCR2 inhibitor SB265610, knockout (CXCR2 KO) or bone marrow (BM) reconstituted chimeric mice for 14 days...
March 5, 2018: European Heart Journal
Julia Dahlmann, George Awad, Carsten Dolny, Sönke Weinert, Karin Richter, Klaus-Dieter Fischer, Thomas Munsch, Volkmar Leßmann, Marianne Volleth, Martin Zenker, Yaoyao Chen, Claudia Merkl, Angelika Schnieke, Hassina Baraki, Ingo Kutschka, George Kensah
The possibility to generate cardiomyocytes from pluripotent stem cells in vitro has enormous significance for basic research, disease modeling, drug development and heart repair. The concept of heart muscle reconstruction has been studied and optimized in the rat model using rat primary cardiovascular cells or xenogeneic pluripotent stem cell derived-cardiomyocytes for years. However, the lack of rat pluripotent stem cells (rPSCs) and their cardiovascular derivatives prevented the establishment of an authentic clinically relevant syngeneic or allogeneic rat heart regeneration model...
2018: PloS One
Alessandro Bertero, Loukia Yiangou, Stephanie Brown, Daniel Ortmann, Matthias Pawlowski, Ludovic Vallier
The difficulties involved in conditionally perturbing complex gene expression networks represent major challenges toward defining the mechanisms controlling human development, physiology, and disease. We developed an OPTimized inducible KnockDown (OPTiKD) platform that addresses the limitations of previous approaches by allowing streamlined, tightly-controlled, and potent loss-of-function experiments for both single and multiple genes. The method relies on single-step genetic engineering of the AAVS1 genomic safe harbor with an optimized tetracycline-responsive cassette driving one or more inducible short hairpin RNAs (shRNAs)...
February 28, 2018: Current Protocols in Stem Cell Biology
R Wang, J-Y Zhang, M Zhang, M-G Zhai, S-Y Di, Q-H Han, Y-P Jia, M Sun, H-L Liang
OBJECTIVE: Ischemia-reperfusion (IR) injury remains an unresolved and complicated situation in clinical practice. In this study, H9c2 cardiomyocytes were subjected to curcumin (Cur) treatment in the absence or presence of the silent information regulator 3 (SIRT3) inhibitor 3-TYP and were then subjected to IR. MATERIALS AND METHODS: H9c2 cells and male Sprague-Dawley (SD) rats were cultured. MTT assay was performed to assess H9c2 cell viability. Cellular apoptosis was analyzed by TUNEL assay...
February 2018: European Review for Medical and Pharmacological Sciences
Zahra Bagheri-Hosseinabadi, Seyed Alireza Mesbah-Namin, Parvin Salehinejad, Fatemeh Seyedi
Human adipose-derived stem cells (hADSCs) are capable of differentiation into many cells including cardiac cells. Different types of scaffolds are used for cell differentiation but the best is yet to be determined. In this study, fibrin scaffold (3D) was fabricated using human plasma fibrinogen and compared with culture plates (2D) for the growth and differentiation of hADSCs into cardiomyocyte-like cells. For this purpose, after obtaining the properties of the isolated hADSCs and fibrin scaffold, four biochemical tests were employed to determine the relative growth rate of hADSCs in 2D and 3D cultures...
March 6, 2018: Cell and Tissue Research
Alan J Ryan, Cathal J Kearney, Nian Shen, Umar Khan, Adam G Kelly, Christopher Probst, Eva Brauchle, Sonia Biccai, Carolina D Garciarena, Victor Vega-Mayoral, Peter Loskill, Steve W Kerrigan, Daniel J Kelly, Katja Schenke-Layland, Jonathan N Coleman, Fergal J O'Brien
Electroconductive substrates are emerging as promising functional materials for biomedical applications. Here, the development of biohybrids of collagen and pristine graphene that effectively harness both the biofunctionality of the protein component and the increased stiffness and enhanced electrical conductivity (matching native cardiac tissue) obtainable with pristine graphene is reported. As well as improving substrate physical properties, the addition of pristine graphene also enhances human cardiac fibroblast growth while simultaneously inhibiting bacterial attachment (Staphylococcus aureus)...
March 5, 2018: Advanced Materials
Bärbel M Ulmer, Andrea Stoehr, Mirja L Schulze, Sajni Patel, Marjan Gucek, Ingra Mannhardt, Sandra Funcke, Elizabeth Murphy, Thomas Eschenhagen, Arne Hansen
Energy metabolism is a key aspect of cardiomyocyte biology. Human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) are a promising tool for biomedical application, but they are immature and have not undergone metabolic maturation related to early postnatal development. To assess whether cultivation of hiPSC-CMs in 3D engineered heart tissue format leads to maturation of energy metabolism, we analyzed the mitochondrial and metabolic state of 3D hiPSC-CMs and compared it with 2D culture. 3D hiPSC-CMs showed increased mitochondrial mass, DNA content, and protein abundance (proteome)...
February 26, 2018: Stem Cell Reports
Ming Hu, Guixian Guo, Qiang Huang, Chuanfang Cheng, Ruqin Xu, Aiqun Li, Ningning Liu, Shiming Liu
Stem cell therapy can be used to repair and regenerate damaged hearts tissue; nevertheless, the low survival rate of transplanted cells limits their therapeutic efficacy. Recently, it has been proposed that exosomes regulate multiple cellular processes by mediating cell survival and communication among cells. The following study investigates whether injured cardiomyocytes-derived exosomes (cardiac exosomes) affect the survival of transplanted bone marrow mesenchymal stem cells (BMSCs) in infarcted heart. To mimic the harsh microenvironment in infarcted heart that the cardiomyocytes or transplanted BMSCs encounter in vivo, cardiomyocytes conditioned medium and cardiac exosomes collected from H2 O2 -treated cardiomyocytes culture medium were cultured with BMSCs under oxidative stress in vitro...
March 2, 2018: Cell Death & Disease
Anja Heselich, Johannes L Frieß, Sylvia Ritter, Naja P Benz, Paul G Layer, Christiane Thielemann
It is well known that ionizing radiation causes adverse effects on various mammalian tissues. However, there is little information on the biological effects of heavy ion radiation on the heart. In order to fill this gap, we systematically examined DNA-damage induction and repair, as well as proliferation and apoptosis in avian cardiomyocyte cultures irradiated with heavy ions such as titanium and iron, relevant for manned space-flight, and carbon ions, as used for radiotherapy. Further, and to our knowledge for the first time, we analyzed the effect of heavy ion radiation on the electrophysiology of primary cardiomyocytes derived from chicken embryos using the non-invasive microelectrode array (MEA) technology...
February 2018: Life Sciences in Space Research
Alexia Vite, Caimei Zhang, Roslyn Yi, Sabrina Emms, Glenn L Radice
Shortly after birth, muscle cells of the mammalian heart lose their ability to divide. At the same time, the N-cadherin/catenin cell adhesion complex accumulates at the cell termini creating a specialized type of cell-cell contact called the intercalated disc (ICD). To investigate the relationship between ICD maturation and proliferation, αE-catenin ( Ctnna1 ) and αT-catenin ( Ctnna3 ) genes were deleted to generate cardiac-specific α-catenin double knockout (DKO) mice. DKO mice exhibited aberrant N-cadherin expression, mislocalized actomyosin activity, and increased cardiomyocyte proliferation that was dependent on Yap activity...
February 21, 2018: Development
Ronald A Li, Wendy Keung, Timothy J Cashman, Peter C Backeris, Bryce V Johnson, Evan S Bardot, Andy O T Wong, Patrick K W Chan, Camie W Y Chan, Kevin D Costa
Tissue engineers and stem cell biologists have made exciting progress toward creating simplified models of human heart muscles or aligned monolayers to help bridge a longstanding gap between experimental animals and clinical trials. However, no existing human in vitro systems provide the direct measures of cardiac performance as a pump. Here, we developed a next-generation in vitro biomimetic model of pumping human heart chamber, and demonstrated its capability for pharmaceutical testing. From human pluripotent stem cell (hPSC)-derived ventricular cardiomyocytes (hvCM) embedded in collagen-based extracellular matrix hydrogel, we engineered a three-dimensional (3D) electro-mechanically coupled, fluid-ejecting miniature human ventricle-like cardiac organoid chamber (hvCOC)...
February 10, 2018: Biomaterials
Wen Zhang, Zhiyue Liu, Yanmei Zhang, Qinxue Bao, Wenchao Wu, He Huang, Xiaojing Liu
AIMS: Calreticulin (CRT), as a chaperone, contributes to protein folding and quality control cycle. CRT is an important factor regulating Ca2+ that participates in cell apoptosis. However, the function of CRT in the heart is still controversial. Therefore, we aimed to investigate the potential role of CRT in angiotensin II-induced cardiomyocytes apoptosis. MAIN METHODS: Primary cultured neonatal cardiomyocytes were stimulated with angiotensin II to induce the apoptosis...
February 14, 2018: Life Sciences
Zhan Wang, Sang Jin Lee, Heng-Jie Cheng, James J Yoo, Anthony Atala
Bioengineering of a functional cardiac tissue composed of primary cardiomyocytes has great potential for myocardial regeneration and in vitro tissue modeling. However, its applications remain limited because the cardiac tissue is a highly organized structure with unique physiologic, biomechanical, and electrical properties. In this study, we undertook a proof-of-concept study to develop a contractile cardiac tissue with cellular organization, uniformity, and scalability by using three-dimensional (3D) bioprinting strategy...
February 13, 2018: Acta Biomaterialia
Lichan Tao, Yihua Bei, Yongqin Li, Junjie Xiao
Cardiomyocytes loss is a major contributor for many cardiovascular diseases including heart failure and myocardial infarction. Although extremely limited, adult cardiomyocytes are able to proliferate. Understanding the molecular mechanisms controlling cardiomyocytes proliferation is extremely important for enhancing cardiomyocyte proliferation to promote cardiac regeneration and repair. MicroRNAs (miRNAs, miRs) are powerful controllers of many essential biological processes including cell proliferation. Here, we described in detail a protocol for isolation and culture of neonatal rat cardiomyocytes and the determination of miRNAs' effects in proliferation based on two well-established methods including EdU and Ki67 immunofluorescent stainings...
2018: Methods in Molecular Biology
Wei Xu, Emily N Vebrosky, Mackenzie L Richards, Kevin L Armbrust
Dicloran is a commonly used fungicide throughout the Southern and Western United States. Runoff of dicloran from agriculture systems to nearby waterbodies can accumulate in the organisms that inhabit those areas. Although severe damage of dicloran to ecological systems has not been reported, its toxicity has been modified by photodegradation. The objective of this study is to assess the changes of dicloran toxicities during photo exposure using a reliable in vitro biological model. In the present investigation, the photodegradation of dicloran in vitro showed over 90% of dicloran was degraded within 24h of UV exposure in water...
February 9, 2018: Science of the Total Environment
András Horváth, Marc D Lemoine, Alexandra Löser, Ingra Mannhardt, Frederik Flenner, Ahmet Umur Uzun, Christiane Neuber, Kaja Breckwoldt, Arne Hansen, Evaldas Girdauskas, Hermann Reichenspurner, Stephan Willems, Norbert Jost, Erich Wettwer, Thomas Eschenhagen, Torsten Christ
Human induced pluripotent stem cell (hiPSC) cardiomyocytes (CMs) show less negative resting membrane potential (RMP), which is attributed to small inward rectifier currents (IK1 ). Here, IK1 was measured in hiPSC-CMs (proprietary and commercial cell line) cultured as monolayer (ML) or 3D engineered heart tissue (EHT) and, for direct comparison, in CMs from human right atrial (RA) and left ventricular (LV) tissue. RMP was measured in isolated cells and intact tissues. IK1 density in ML- and EHT-CMs from the proprietary line was similar to LV and RA, respectively...
March 13, 2018: Stem Cell Reports
Fetch more papers »
Fetching more papers... Fetching...
Read by QxMD. Sign in or create an account to discover new knowledge that matter to you.
Remove bar
Read by QxMD icon Read

Search Tips

Use Boolean operators: AND/OR

diabetic AND foot
diabetes OR diabetic

Exclude a word using the 'minus' sign

Virchow -triad

Use Parentheses

water AND (cup OR glass)

Add an asterisk (*) at end of a word to include word stems

Neuro* will search for Neurology, Neuroscientist, Neurological, and so on

Use quotes to search for an exact phrase

"primary prevention of cancer"
(heart or cardiac or cardio*) AND arrest -"American Heart Association"