Read by QxMD icon Read


Johannes F Kolmar, Oliver Thum, Frank Baganz
BACKGROUND: Numerous challenges remain to achieve industrially competitive space-time yields for bio-oxidations. The ability to rapidly screen bioconversion reactions for characterization and optimization is of major importance in bioprocess development and biocatalyst selection; studies at conventional lab scale are time consuming and labor intensive with low experimental throughput. The direct ω-oxyfunctionalization of aliphatic alkanes in a regio- and chemoselective manner is efficiently catalyzed by monooxygenases such as the AlkBGT enzyme complex from Pseudomonas putida under mild conditions...
October 10, 2017: Microbial Cell Factories
Anna Hoschek, Bruno Bühler, Andreas Schmid
Gas-liquid mass transfer of gaseous reactants is a major limitation for high space-time yields, especially for O2 -dependent (bio)catalytic reactions in aqueous solutions. Herein, oxygenic photosynthesis was used for homogeneous O2 supply via in situ generation in the liquid phase to overcome this limitation. The phototrophic cyanobacterium Synechocystis sp. PCC6803 was engineered to synthesize the alkane monooxygenase AlkBGT from Pseudomonas putida GPo1. With light, but without external addition of O2 , the chemo- and regioselective hydroxylation of nonanoic acid methyl ester to ω-hydroxynonanoic acid methyl ester was driven by O2 generated through photosynthetic water oxidation...
November 20, 2017: Angewandte Chemie
Marvin Kadisch, Mattijs K Julsing, Manfred Schrewe, Nico Jehmlich, Benjamin Scheer, Martin von Bergen, Andreas Schmid, Bruno Bühler
It is a common misconception in whole-cell biocatalysis to refer to an enzyme as the biocatalyst, thereby neglecting the structural and metabolic framework provided by the cell. Here, the low whole-cell biocatalyst stability, that is, the stability of specific biocatalyst activity, in a process for the terminal oxyfunctionalization of renewable fatty acid methyl esters was investigated. This reaction, which is difficult to achieve by chemical means, is catalyzed by Escherichia coli featuring the monooxygenase system AlkBGT and the uptake facilitator AlkL from Pseudomonas putida GPo1...
April 2017: Biotechnology and Bioengineering
Youri M van Nuland, Gerrit Eggink, Ruud A Weusthuis
UNLABELLED: The enzyme system AlkBGT from Pseudomonas putida GPo1 can efficiently ω-functionalize fatty acid methyl esters. Outer membrane protein AlkL boosts this ω-functionalization. In this report, it is shown that whole cells of Escherichia coli expressing the AlkBGT system can also ω-oxidize ethyl nonanoate (NAEE). Coexpression of AlkBGT and AlkL resulted in 1.7-fold-higher ω-oxidation activity on NAEE. With this strain, initial activity on NAEE was 70 U/g (dry weight) of cells (gcdw), 67% of the initial activity on methyl nonanoate...
July 1, 2016: Applied and Environmental Microbiology
Toby P Call, M Kalim Akhtar, Frank Baganz, Chris Grant
BACKGROUND: In recent years, there have been intensive efforts to develop synthetic microbial platforms for the production, biosensing and bio-remediation of fossil fuel constituents such as alkanes. Building predictable engineered systems for these applications will require the ability to tightly control and modulate the rate of import of alkanes into the host cell. The native components responsible for the import of alkanes within these systems have yet to be elucidated. To shed further insights on this, we used the AlkBGT alkane monooxygenase complex from Pseudomonas putida GPo1 as a reporter system for assessing alkane import in Escherichia coli...
2016: Journal of Biological Engineering
James M Clomburg, Matthew D Blankschien, Jacob E Vick, Alexander Chou, Seohyoung Kim, Ramon Gonzalez
An engineered reversal of the β-oxidation cycle was exploited to demonstrate its utility for the synthesis of medium chain (6-10-carbons) ω-hydroxyacids and dicarboxylic acids from glycerol as the only carbon source. A redesigned β-oxidation reversal facilitated the production of medium chain carboxylic acids, which were converted to ω-hydroxyacids and dicarboxylic acids by the action of an engineered ω-oxidation pathway. The selection of a key thiolase (bktB) and thioesterase (ydiI) in combination with previously established core β-oxidation reversal enzymes, as well as the development of chromosomal expression systems for the independent control of pathway enzymes, enabled the generation of C6-C10 carboxylic acids and provided a platform for vector based independent expression of ω-functionalization enzymes...
March 2015: Metabolic Engineering
Manfred Schrewe, Mattijs K Julsing, Kerstin Lange, Eik Czarnotta, Andreas Schmid, Bruno Bühler
The oxyfunctionalization of unactivated C−H bonds can selectively and efficiently be catalyzed by oxygenase-containing whole-cell biocatalysts. Recombinant Escherichia coli W3110 containing the alkane monooxygenase AlkBGT and the outer membrane protein AlkL from Pseudomonas putida GPo1 have been shown to efficiently catalyze the terminal oxyfunctionalization of renewable fatty acid methyl esters yielding bifunctional products of interest for polymer synthesis. In this study, AlkBGTL-containing E. coli W3110 is shown to catalyze the multistep conversion of dodecanoic acid methyl ester (DAME) via terminal alcohol and aldehyde to the acid, exhibiting Michaelis-Menten-type kinetics for each reaction step...
September 2014: Biotechnology and Bioengineering
Rainer Gross, Katja Buehler, Andreas Schmid
This study evaluates the technical feasibility of biofilm-based biotransformations at an industrial scale by theoretically designing a process employing membrane fiber modules as being used in the chemical industry and compares the respective process parameters to classical stirred-tank studies. To our knowledge, catalytic biofilm processes for fine chemicals production have so far not been reported on a technical scale. As model reactions, we applied the previously studied asymmetric styrene epoxidation employing Pseudomonas sp...
February 2013: Biotechnology and Bioengineering
Mattijs K Julsing, Manfred Schrewe, Sjef Cornelissen, Inna Hermann, Andreas Schmid, Bruno Bühler
The outer membrane of microbial cells forms an effective barrier for hydrophobic compounds, potentially causing an uptake limitation for hydrophobic substrates. Low bioconversion activities (1.9 U g(cdw)(-1)) have been observed for the ω-oxyfunctionalization of dodecanoic acid methyl ester by recombinant Escherichia coli containing the alkane monooxygenase AlkBGT of Pseudomonas putida GPo1. Using fatty acid methyl ester oxygenation as the model reaction, this study investigated strategies to improve bacterial uptake of hydrophobic substrates...
August 2012: Applied and Environmental Microbiology
Fetch more papers »
Fetching more papers... Fetching...
Read by QxMD. Sign in or create an account to discover new knowledge that matter to you.
Remove bar
Read by QxMD icon Read

Search Tips

Use Boolean operators: AND/OR

diabetic AND foot
diabetes OR diabetic

Exclude a word using the 'minus' sign

Virchow -triad

Use Parentheses

water AND (cup OR glass)

Add an asterisk (*) at end of a word to include word stems

Neuro* will search for Neurology, Neuroscientist, Neurological, and so on

Use quotes to search for an exact phrase

"primary prevention of cancer"
(heart or cardiac or cardio*) AND arrest -"American Heart Association"