Read by QxMD icon Read


Zhiguo Yuan, Shuyun Liu, Chunxiang Hao, Weimin Guo, Shuang Gao, Mingjie Wang, Mingxue Chen, Zhen Sun, Yichi Xu, Yu Wang, Jiang Peng, Mei Yuan, Quan-Yi Guo
Tissue-engineered meniscus regeneration is a very promising treatment strategy for meniscus lesions. However, generating the scaffold presents a huge challenge for meniscus engineering as this has to meet particular biomechanical and biocompatibility requirements. In this study, we utilized acellular meniscus extracellular matrix (AMECM) and demineralized cancellous bone (DCB) to construct three different types of three-dimensional porous meniscus scaffold: AMECM, DCB, and AMECM/DCB, respectively. We tested the scaffolds' physicochemical characteristics and observed their interactions with meniscus fibrochondrocytes to evaluate their cytocompatibility...
December 2016: Biomaterials
Elke Berneel, Charlot Philips, Heidi Declercq, Ria Cornelissen
In meniscus tissue engineering strategies, enhancing the matrix quality of the neomeniscal tissue is important. When the differentiated phenotype of fibrochondrocytes is lost, the quality of the matrix becomes compromised. The objective of this study was to produce uniform fibrochondrocyte micro-aggregates with desirable phenotype and tissue homogeneity in large quantities using a simple and reproducible method. Furthermore, we investigated if hypoxia could enhance the matrix quality. Porcine fibrochondrocytes were expanded at 21% oxygen until passage 3 (P3) and a gene expression profile was determined...
August 19, 2016: Cells, Tissues, Organs
Yiying Qi, Guangnan Chen, Gang Feng
Transplantation of mesenchymal stem cells (MSCs) is a potential therapy for meniscus regeneration. However, when using single cell suspension injection, there is frequently a significant loss of cells, with only a small percentage of cells remaining at the target site. This issue may be solved with the use of MSC sheets. In the present study, we investigated whether the use of MSC sheets were able to regenerate the meniscus effectively in a rat meniscectomized model. The anterior half of the medial meniscus in 10 rats was excised and an MSC sheet was transplanted in the MSC sheet treatment group, while untreated rats served as the control...
July 2016: Experimental and Therapeutic Medicine
Sharon Ronald, David K Mills
Disorders affecting the temporomandibular joint (TMJ) are a long-standing health concern. TMJ disorders (TMJD) are often associated with an internal disc derangement accompanied by a suite of symptoms including joint noises, jaw dysfunction, and severe pain. The severity of patient symptoms and their reoccurrence can be alleviated to some extent with conservative therapy; however, refractory cases often require surgery that has shown only limited success. Bioengineered scaffolds with cell supportive surfaces an d nanoarchitectures that mimic TMJ tissue structure may offer an alternative treatment modality...
2016: Journal of Functional Biomaterials
Ana Rey-Rico, Angelique Klich, Magali Cucchiarini, Henning Madry
Alginates are important hydrogels for meniscus tissue engineering as they support the meniscal fibrochondrocyte phenotype and proteoglycan production, the extracellular matrix (ECM) component chiefly responsible for its viscoelastic properties. Here, we systematically evaluated four biomedical- and two nonbiomedical-grade alginates for their capacity to provide the best three-dimensional (3-D) microenvironment and to support proteoglycan synthesis of encapsulated human meniscal fibrochondrocytes in vitro. Biomedical-grade, high mannuronic acid alginate spheres (BioLVM, BioMVM) were the most uniform in size, indicating an effect of the purity of alginate on the shape of the spheres...
2016: Scientific Reports
Shurong Zhang, Takehiko Matsushita, Ryosuke Kuroda, Kyohei Nishida, Tokio Matsuzaki, Tomoyuki Matsumoto, Koji Takayama, Kanto Nagai, Shinya Oka, Yasuhiko Tabata, Kouki Nagamune, Masahiro Kurosaka
BACKGROUND: Repair of an avascular meniscus is challenging because of its low capacity for healing. Several reports have shown that simvastatin stimulates the anabolic activity of intervertebral fibrochondrocytes, suggesting that simvastatin may be used for the treatment of meniscal defects. PURPOSE: To test whether the local administration of simvastatin stimulates healing of an avascular meniscus in rabbits. STUDY DESIGN: Controlled laboratory study...
July 2016: American Journal of Sports Medicine
Takayuki Furumatsu, Ami Maehara, Toshifumi Ozaki
BACKGROUND: Proper functioning of the meniscus depends on the composition and organization of its fibrocartilaginous extracellular matrix. We previously demonstrated that the avascular inner meniscus has a more chondrocytic phenotype compared with the outer meniscus. Inhibition of the Rho family GTPase ROCK, the major regulator of the actin cytoskeleton, stimulates the chondrogenic transcription factor Sry-type HMG box (SOX) 9-dependent α1(II) collagen (COL2A1) expression in inner meniscus cells...
July 2016: Journal of Orthopaedic Science: Official Journal of the Japanese Orthopaedic Association
Mary Clare McCorry, Jennifer L Puetzer, Lawrence J Bonassar
BACKGROUND: Bone marrow mesenchymal stem cells (MSCs) have shown positive therapeutic effects for meniscus regeneration and repair. Preliminary in vitro work has indicated positive results for MSC applications for meniscus tissue engineering; however, more information is needed on how to direct MSC behavior. The objective of this study was to examine the effect of MSC co-culture with primary meniscal fibrochondrocytes (FCCs) in a three-dimensional collagen scaffold in fibrochondrogenic media...
2016: Stem Cell Research & Therapy
Yiying Qi, Zhigao Yang, Qianhai Ding, Tengfei Zhao, Zhongming Huang, Gang Feng
Repair of a massive meniscal defect remains a challenge in the clinic. However, targeted magnetic cell delivery, an emerging technique, may be useful in its treatment. The present study aimed to determine the effect of targeted intra-articular injection of superparamagnetic iron oxide (SPIO)-labeled adipose-derived mesenchymal stem cells (ASCs) in a rabbit model of a massive meniscal defect. ASCs may be directly labeled and almost 100% of the ASCs were labeled with SPIO after 24 h; these SPIO-labeled ASCs may be orientated by magnet...
February 2016: Experimental and Therapeutic Medicine
Undine Freymann, Sebastian Metzlaff, Jan-Philipp Krüger, Glen Hirsh, Michaela Endres, Wolf Petersen, Christian Kaps
PURPOSE: To evaluate the effect of 10% human serum (HS), 5% platelet-rich plasma (PRP), and 5% autologous conditioned plasma (ACP) on migration, proliferation, and extracellular matrix (ECM) synthesis of human meniscus cells. METHODS: Cell migration and proliferation on stimulation with HS, PRP, and ACP were assessed by chemotaxis assays and measurement of genomic DNA content. Meniscus cells were cultivated in pellets stimulated with 10% HS, 5% PRP, or 5% ACP. Meniscal ECM formation was evaluated by histochemical staining of collagen type I, type II, and proteoglycans and by analysis of fibrochondrocyte marker gene expression...
June 2016: Arthroscopy: the Journal of Arthroscopic & related Surgery
Yuan-Yuan Shi, Lin-Xin Chen, Yan Xu, Xiao-Qing Hu, Ying-Fang Ao, Jian-Quan Wang
BACKGROUND: Acetabular labral reconstruction with autologous tendons is the preferred method for treating a severely damaged labrum. However, the healing process of implants remains unknown. Similar to the human acetabular labrum, the porcine acetabular labrum is a fibrocartilage-like tissue. PURPOSE: This study aimed to characterize the histological healing process and gene expression profile of implants in a porcine model of acetabular labral reconstruction. STUDY DESIGN: Descriptive laboratory study...
April 2016: American Journal of Sports Medicine
He Huang, Shukui Wang, Jianchao Gui, Haiqi Shen
The repair of meniscus in the avascular zone remains a great challenge, largely owing to their limited healing capacity. Stem cells based tissue engineering provides a promising treatment option for damaged meniscus because of their multiple differentiation potential. We hypothesized that meniscus-derived stromal cells (MMSCs) may be present in meniscal tissue, and if their pluripotency and character can be established, they may play a role in meniscal healing. To test our hypothesis, we isolated MMSCs, bone marrow-derived stromal cells (BMSCs) and fibrochondrocytes from rabbits...
October 2016: Cytotechnology
Nathaniel A Dyment, Andrew P Breidenbach, Andrea G Schwartz, Ryan P Russell, Lindsey Aschbacher-Smith, Han Liu, Yusuke Hagiwara, Rulang Jiang, Stavros Thomopoulos, David L Butler, David W Rowe
The sequence of events that leads to the formation of a functionally graded enthesis is not clearly defined. The current study demonstrates that clonal expansion of Gdf5 progenitors contributes to linear growth of the enthesis. Prior to mineralization, Col1+ cells in the enthesis appose Col2+ cells of the underlying primary cartilage. At the onset of enthesis mineralization, cells at the base of the enthesis express alkaline phosphatase, Indian hedgehog, and ColX as they mineralize. The mineralization front then extends towards the tendon midsubstance as cells above the front become encapsulated in mineralized fibrocartilage over time...
September 1, 2015: Developmental Biology
Zheng-Zheng Zhang, Dong Jiang, Shao-Jie Wang, Yan-Song Qi, Ji-Ying Zhang, Jia-Kuo Yu
Tissue-engineered meniscus offers a possible solution to the regeneration and replacement problem of meniscectomy. However, the nonuniform distribution and declined proliferation of seeded cells on scaffolds hinder the application of tissue-engineered meniscus as a new generation of meniscus graft. This study systematically investigated the performances of different seeding techniques by using the demineralized cancellous bone (DCB) as the scaffold. Static seeding, injection seeding, centrifugal seeding, and vacuum seeding methods were used to seed the meniscal fibrochondrocytes (MFCs) and mesenchymal stem cells (MSCs) to scaffolds...
July 22, 2015: ACS Applied Materials & Interfaces
Xuanhe Song, Yaoping Xie, Yang Liu, Ming Shao, Wenbo Wang
Meniscus reconstruction is in great need for orthopedic surgeons. Meniscal fibrochondrocytes transplantation was proposed to regenerate functional meniscus, with limited donor supply. We hypothesized that coculture of synovial mesenchymal stem cells (SSC) with meniscal fibrochondrocytes (me-CH) can support matrix production of me-CH, thus reducing the number of me-CH needed for meniscus reconstruction. A pellet coculture system of human SSC and me-CH was used in this study. Enhanced glycosaminoglycans (GAG) in coculture pellets were demonstrated by Alcian blue staining and GAG quantification, when compared to monoculture...
2015: Stem Cells International
Min-Sun Son, Marc E Levenston
Success in cartilage and fibrocartilage tissue engineering relies heavily on using an appropriate cell source. Many different cell sources have been identified, including primary and stem cells, along with experimental strategies to obtain the required number of cells or to induce chondrogenesis. However, no definitive method exists to quantitatively evaluate the similarity of the resulting cell phenotypes to those of the native cells between candidate strategies. In this study, we develop an integrative approach to enable such evaluations by deriving, from gene expression profiles, two quantitative metrics representing the nearest location within the range of native cell phenotypes and the deviation from it...
March 30, 2015: Journal of Tissue Engineering and Regenerative Medicine
Kazunori Shimomura, Allison C Bean, Hang Lin, Norimasa Nakamura, Rocky S Tuan
Radial tears of the meniscus represent one of the most common injuries of the knee, and result in loss of biomechanical meniscal function. However, there have been no established, effective treatments for radial meniscal tears. Nanofibrous materials produced by electrospinning have shown high promise in the engineering of soft musculoskeletal tissues. The goal of our study is to apply these technologies to develop a functional cell-seeded scaffold as a potential, new surgical method to enhance meniscal radial repair...
July 2015: Tissue Engineering. Part A
Jiseung Heo, Rachel H Koh, Whuisu Shim, Hwan D Kim, Hyun-Gu Yim, Nathaniel S Hwang
A meniscus tear is a common knee injury, but its regeneration remains a clinical challenge. Recently, collagen-based scaffolds have been applied in meniscus tissue engineering. Despite its prevalence, application of natural collagen scaffold in clinical setting is limited due to its extremely low stiffness and rapid degradation. The purpose of the present study was to increase the mechanical properties and delay degradation rate of a collagen-based scaffold by photo-crosslinking using riboflavin (RF) and UV exposure...
April 2016: Drug Delivery and Translational Research
Jennifer L Puetzer, Esther Koo, Lawrence J Bonassar
This study investigated the effect of mechanical anchoring on the development of fiber organization and anisotropy in anatomically shaped tissue engineered menisci. Bovine meniscal fibrochondrocytes were mixed with collagen and injected into molds designed to produce meniscus implants with 12 mm extensions at each horn. After a day of static culture, 10 and 20mg/ml collagen menisci were either clamped or unclamped and cultured for up to 8 weeks. Clamped menisci were anchored in culture trays throughout culture to mimic the native meniscus horn attachment sites, restrict contraction circumferentially, and encourage circumferential alignment...
June 1, 2015: Journal of Biomechanics
Haining Zhang, Ping Leng, Tian He, Yingzhen Wang
BACKGROUND: Treatment strategies for meniscal injury are shifting from meniscectomy to repair, especially cell-based therapy. Delivering selected genes to donor cells can modify differentiation and proliferation. Efficiency of gene transfection and expression may relate to cell type. MATERIAL AND METHODS: Full-length hIGF-1 cDNA was cloned into eukaryotic expression vector by PCR. Human BMSCs and meniscal fibrochondrocytes were isolated and cultured in vitro and hIGF-1 gene was transfected by FuGene 6...
2015: Medical Science Monitor: International Medical Journal of Experimental and Clinical Research
Fetch more papers »
Fetching more papers... Fetching...
Read by QxMD. Sign in or create an account to discover new knowledge that matter to you.
Remove bar
Read by QxMD icon Read

Search Tips

Use Boolean operators: AND/OR

diabetic AND foot
diabetes OR diabetic

Exclude a word using the 'minus' sign

Virchow -triad

Use Parentheses

water AND (cup OR glass)

Add an asterisk (*) at end of a word to include word stems

Neuro* will search for Neurology, Neuroscientist, Neurological, and so on

Use quotes to search for an exact phrase

"primary prevention of cancer"
(heart or cardiac or cardio*) AND arrest -"American Heart Association"