Read by QxMD icon Read

epistasis molecular evolution

Sara Magalhães, Élio Sucena
One of the major challenges in evolutionary biology is to unravel the genetic basis of adaptation. This issue has been gaining momentum in recent years with the accelerated development of novel genetic and genomic techniques and resources. In this issue of Molecular Ecology, Cogni et al. (2016) address the genetic basis of resistance to two viruses in Drosophila melanogaster using a panel of recombinant inbred lines with unprecedented resolution allowing detection of rare alleles and/or alleles of small effect...
October 2016: Molecular Ecology
Nicholas Jochumsen, Rasmus L Marvig, Søren Damkiær, Rune Lyngklip Jensen, Wilhelm Paulander, Søren Molin, Lars Jelsbak, Anders Folkesson
Colistin is an antimicrobial peptide that has become the only remaining alternative for the treatment of multidrug-resistant Gram-negative bacterial infections, but little is known of how clinical levels of colistin resistance evolve. We use in vitro experimental evolution and whole-genome sequencing of colistin-resistant Pseudomonas aeruginosa isolates from cystic fibrosis patients to reconstruct the molecular evolutionary pathways open for high-level colistin resistance. We show that the evolution of resistance is a complex, multistep process that requires mutation in at least five independent loci that synergistically create the phenotype...
October 3, 2016: Nature Communications
Robert Polster, Christos J Petropoulos, Sebastian Bonhoeffer, Frédéric Guillaume
The genotype-phenotype (GP) map is a central concept in evolutionary biology as it describes the mapping of molecular genetic variation onto phenotypic trait variation. Our understanding of that mapping remains partial, especially when trying to link functional clustering of pleiotropic gene effects with patterns of phenotypic trait co-variation. Only on rare occasions have studies been able to fully explore that link and tend to show poor correspondence between modular structures within the GP map and among phenotypes...
September 27, 2016: Molecular Biology and Evolution
Mathilde Lescat, Adrien Launay, Mohamed Ghalayini, Mélanie Magnan, Jérémy Glodt, Coralie Pintard, Sara Dion, Erick Denamur, Olivier Tenaillon
Although microbial ecology of the gut is now a major focus of interest, little is known about the molecular determinants of microbial adaptation in the gut. Experimental evolution coupled with whole-genome sequencing can provide insights of the adaptive process. In vitro experiments have revealed some conserved patterns: intermediate convergence, and epistatic interactions between beneficial mutations and mutations in global regulators. To test the relevance of these patterns and to identify the selective pressures acting in vivo, we have performed a long-term adaptation of an E...
September 23, 2016: Molecular Ecology
Fábio K Mendes, Yoonsoo Hahn, Matthew W Hahn
Phenotypic convergence is an exciting outcome of adaptive evolution, occurring when different species find similar solutions to the same problem. Unraveling the molecular basis of convergence provides a way to link genotype to adaptive phenotypes, but can also shed light on the extent to which molecular evolution is repeatable and predictable. Many recent genome-wide studies have uncovered a striking pattern of diminishing convergence over time, ascribing this pattern to the presence of intramolecular epistatic interactions...
September 15, 2016: Molecular Biology and Evolution
David M McCandlish, Premal Shah, Joshua B Plotkin
Recent studies of protein evolution contend that the longer an amino acid substitution is present at a site, the less likely it is to revert to the amino acid previously occupying that site. Here we study this phenomenon of decreasing reversion rates rigorously and in a much more general context. We show that, under weak mutation and for arbitrary fitness landscapes, reversion rates decrease with time for any site that is involved in at least one epistatic interaction. Specifically, we prove that, at stationarity, the hazard function of the distribution of waiting times until reversion is strictly decreasing for any such site...
July 2016: Genetics
Karen S Sarkisyan, Dmitry A Bolotin, Margarita V Meer, Dinara R Usmanova, Alexander S Mishin, George V Sharonov, Dmitry N Ivankov, Nina G Bozhanova, Mikhail S Baranov, Onuralp Soylemez, Natalya S Bogatyreva, Peter K Vlasov, Evgeny S Egorov, Maria D Logacheva, Alexey S Kondrashov, Dmitry M Chudakov, Ekaterina V Putintseva, Ilgar Z Mamedov, Dan S Tawfik, Konstantin A Lukyanov, Fyodor A Kondrashov
Fitness landscapes depict how genotypes manifest at the phenotypic level and form the basis of our understanding of many areas of biology, yet their properties remain elusive. Previous studies have analysed specific genes, often using their function as a proxy for fitness, experimentally assessing the effect on function of single mutations and their combinations in a specific sequence or in different sequences. However, systematic high-throughput studies of the local fitness landscape of an entire protein have not yet been reported...
May 19, 2016: Nature
T Vogwill, M Kojadinovic, R C MacLean
Antibiotic resistance often evolves by mutations at conserved sites in essential genes, resulting in parallel molecular evolution between divergent bacterial strains and species. Whether these resistance mutations are having parallel effects on fitness across bacterial taxa, however, is unclear. This is an important point to address, because the fitness effects of resistance mutations play a key role in the spread and maintenance of resistance in pathogen populations. We address this idea by measuring the fitness effect of a collection of rifampicin resistance mutations in the β subunit of RNA polymerase (rpoB) across eight strains that span the diversity of the genus Pseudomonas We find that almost 50% of rpoB mutations have background-dependent fitness costs, demonstrating that epistatic interactions between rpoB and the rest of the genome are common...
May 11, 2016: Proceedings. Biological Sciences
Philippe Julien, Belén Miñana, Pablo Baeza-Centurion, Juan Valcárcel, Ben Lehner
The properties of genotype-phenotype landscapes are crucial for understanding evolution but are not characterized for most traits. Here, we present a >95% complete local landscape for a defined molecular function-the alternative splicing of a human exon (FAS/CD95 exon 6, involved in the control of apoptosis). The landscape provides important mechanistic insights, revealing that regulatory information is dispersed throughout nearly every nucleotide in an exon, that the exon is more robust to the effects of mutations than its immediate neighbours in genotype space, and that high mutation sensitivity (evolvability) will drive the rapid divergence of alternative splicing between species unless it is constrained by selection...
2016: Nature Communications
Olga Puchta, Botond Cseke, Hubert Czaja, David Tollervey, Guido Sanguinetti, Grzegorz Kudla
Epistatic interactions play a fundamental role in molecular evolution, but little is known about the spatial distribution of these interactions within genes. To systematically survey a model landscape of intragenic epistasis, we quantified the fitness of ~60,000 Saccharomyces cerevisiae strains expressing randomly mutated variants of the 333-nucleotide-long U3 small nucleolar RNA (snoRNA). The fitness effects of individual mutations were correlated with evolutionary conservation and structural stability. Many mutations had small individual effects but had large effects in the context of additional mutations, which indicated negative epistasis...
May 13, 2016: Science
Jay F Storz
To what extent is the convergent evolution of protein function attributable to convergent or parallel changes at the amino acid level? The mutations that contribute to adaptive protein evolution may represent a biased subset of all possible beneficial mutations owing to mutation bias and/or variation in the magnitude of deleterious pleiotropy. A key finding is that the fitness effects of amino acid mutations are often conditional on genetic background. This context dependence (epistasis) can reduce the probability of convergence and parallelism because it reduces the number of possible mutations that are unconditionally acceptable in divergent genetic backgrounds...
April 2016: Nature Reviews. Genetics
Barrett Steinberg, Marc Ostermeier
In the basic fitness landscape metaphor for molecular evolution, evolutionary pathways are presumed to follow uphill steps of increasing fitness. How evolution can cross fitness valleys is an open question. One possibility is that environmental changes alter the fitness landscape such that low-fitness sequences reside on a hill in alternate environments. We experimentally test this hypothesis on the antibiotic resistance gene TEM-15 β-lactamase by comparing four evolutionary strategies shaped by environmental changes...
January 2016: Science Advances
C Brandon Ogbunugafor, C Scott Wylie, Ibrahim Diakite, Daniel M Weinreich, Daniel L Hartl
The adaptive landscape analogy has found practical use in recent years, as many have explored how their understanding can inform therapeutic strategies that subvert the evolution of drug resistance. A major barrier to applications of these concepts is a lack of detail concerning how the environment affects adaptive landscape topography, and consequently, the outcome of drug treatment. Here we combine empirical data, evolutionary theory, and computer simulations towards dissecting adaptive landscape by environment interactions for the evolution of drug resistance in two dimensions-drug concentration and drug type...
January 2016: PLoS Computational Biology
Peter B Chi, David A Liberles
Characterizing the probabilities of observing amino acid substitutions at specific sites in a protein over evolutionary time is a major goal in the field of molecular evolution. While purely statistical approaches at different levels of complexity exist, approaches rooted in underlying biological processes are necessary to characterize both the context-dependence of sequence changes (epistasis) and to extrapolate to sequences not observed in biological databases. To develop such approaches, an understanding of the different selective forces that act on amino acid substitution is necessary...
July 2016: Protein Science: a Publication of the Protein Society
Wesley Loftie-Eaton, Hirokazu Yano, Stephen Burleigh, Ryan S Simmons, Julie M Hughes, Linda M Rogers, Samuel S Hunter, Matthew L Settles, Larry J Forney, José M Ponciano, Eva M Top
The World Health Organization has declared the emergence of antibiotic resistance to be a global threat to human health. Broad-host-range plasmids have a key role in causing this health crisis because they transfer multiple resistance genes to a wide range of bacteria. To limit the spread of antibiotic resistance, we need to gain insight into the mechanisms by which the host range of plasmids evolves. Although initially unstable plasmids have been shown to improve their persistence through evolution of the plasmid, the host, or both, the means by which this occurs are poorly understood...
April 2016: Molecular Biology and Evolution
Gianni Monaco, Sipko van Dam, João Luis Casal Novo Ribeiro, Anis Larbi, João Pedro de Magalhães
BACKGROUND: A deeper understanding of differences and similarities in transcriptional regulation between species can uncover important information about gene functions and the role of genes in disease. Deciphering such patterns between mice and humans is especially important since mice play an essential role in biomedical research. RESULTS: Here, in order to characterize evolutionary changes between humans and mice, we compared gene co-expression maps to evaluate the conservation of co-expression...
November 20, 2015: BMC Evolutionary Biology
Benjamin A Wilson, Nandita R Garud, Alison F Feder, Zoe J Assaf, Pleuni S Pennings
Drug resistance is a costly consequence of pathogen evolution and a major concern in public health. In this review, we show how population genetics can be used to study the evolution of drug resistance and also how drug resistance evolution is informative as an evolutionary model system. We highlight five examples from diverse organisms with particular focus on: (i) identifying drug resistance loci in the malaria parasite Plasmodium falciparum using the genomic signatures of selective sweeps, (ii) determining the role of epistasis in drug resistance evolution in influenza, (iii) quantifying the role of standing genetic variation in the evolution of drug resistance in HIV, (iv) using drug resistance mutations to study clonal interference dynamics in tuberculosis and (v) analysing the population structure of the core and accessory genome of Staphylococcus aureus to understand the spread of methicillin resistance...
January 2016: Molecular Ecology
Bei-Wen Ying, Yuki Matsumoto, Kazuki Kitahara, Shingo Suzuki, Naoaki Ono, Chikara Furusawa, Toshihiko Kishimoto, Tetsuya Yomo
BACKGROUND: Evolution optimizes a living system at both the genome and transcriptome levels. Few studies have investigated transcriptome evolution, whereas many studies have explored genome evolution in experimentally evolved cells. However, a comprehensive understanding of evolutionary mechanisms requires knowledge of how evolution shapes gene expression. Here, we analyzed Escherichia coli strains acquired during long-term thermal adaptive evolution. RESULTS: Evolved and ancestor Escherichia coli cells were exponentially grown under normal and high temperatures for subsequent transcriptome analysis...
2015: BMC Genomics
Marie Filteau, Véronique Hamel, Marie-Christine Pouliot, Isabelle Gagnon-Arsenault, Alexandre K Dubé, Christian R Landry
Since deleterious mutations may be rescued by secondary mutations during evolution, compensatory evolution could identify genetic solutions leading to therapeutic targets. Here, we tested this hypothesis and examined whether these solutions would be universal or would need to be adapted to one's genetic and environmental make-ups. We performed experimental evolutionary rescue in a yeast disease model for the Wiskott-Aldrich syndrome in two genetic backgrounds and carbon sources. We found that multiple aspects of the evolutionary rescue outcome depend on the genotype, the environment, or a combination thereof...
October 12, 2015: Molecular Systems Biology
Anthony Long, Gianni Liti, Andrej Luptak, Olivier Tenaillon
Evolve and resequence (E&R) experiments use experimental evolution to adapt populations to a novel environment, then next-generation sequencing to analyse genetic changes. They enable molecular evolution to be monitored in real time on a genome-wide scale. Here, we review the field of E&R experiments across diverse systems, ranging from simple non-living RNA to bacteria, yeast and the complex multicellular organism Drosophila melanogaster. We explore how different evolutionary outcomes in these systems are largely consistent with common population genetics principles...
October 2015: Nature Reviews. Genetics
Fetch more papers »
Fetching more papers... Fetching...
Read by QxMD. Sign in or create an account to discover new knowledge that matter to you.
Remove bar
Read by QxMD icon Read

Search Tips

Use Boolean operators: AND/OR

diabetic AND foot
diabetes OR diabetic

Exclude a word using the 'minus' sign

Virchow -triad

Use Parentheses

water AND (cup OR glass)

Add an asterisk (*) at end of a word to include word stems

Neuro* will search for Neurology, Neuroscientist, Neurological, and so on

Use quotes to search for an exact phrase

"primary prevention of cancer"
(heart or cardiac or cardio*) AND arrest -"American Heart Association"