keyword
MENU ▼
Read by QxMD icon Read
search

BRD3

keyword
https://www.readbyqxmd.com/read/29656650/discovery-of-tetrahydroquinoxalines-as-bromodomain-and-extra-terminal-domain-bet-inhibitors-with-selectivity-for-the-second-bromodomain
#1
Robert P Law, Stephen J Atkinson, Paul Bamborough, Chun-Wa Chung, Emmanuel H Demont, Laurie J Gordon, Matthew Lindon, Rab K Prinjha, Allan J B Watson, David Jonathan Hirst
The bromodomain and extra-terminal domain (BET) family of proteins bind acetylated lysine residues on histone proteins. The four BET bromodomains, BRD2, BRD3, BRD4 and BRDT, each contain two bromodomain modules. BET bromodomain inhibition is a potential therapy for various cancers and immunoinflammatory diseases, but few reported inhibitors show selectivity within the BET family. Inhibitors with selectivity for the first or second bromodomain are desired to aid investigation of the biological function of these domains...
April 15, 2018: Journal of Medicinal Chemistry
https://www.readbyqxmd.com/read/29603290/bet-ting-on-nrf2-how-nrf2-signaling-can-influence-the-therapeutic-activities-of-bet-protein-inhibitors
#2
REVIEW
Nirmalya Chatterjee, Dirk Bohmann
BET proteins such as Brd3 and Brd4 are chromatin-associated factors, which control gene expression programs that promote inflammation and cancer. The Nrf2 transcription factor is a master regulator of genes that protect the organism against xenobiotic attack and oxidative stress. Nrf2 has demonstrated anti-inflammatory activity and can support cancer cell malignancy. This review describes the discovery, mechanism and biomedical implications of the regulatory interplay between Nrf2 and BET proteins. Both Nrf2 and BET proteins are established drug targets...
March 30, 2018: BioEssays: News and Reviews in Molecular, Cellular and Developmental Biology
https://www.readbyqxmd.com/read/29567837/the-brd3-et-domain-recognizes-a-short-peptide-motif-through-a-mechanism-that-is-conserved-across-chromatin-remodelers-and-transcriptional-regulators
#3
Dorothy C Wai, Taylor N Szyszka, Amy E Campbell, Cherry Kwong, Lorna E Wilkinson-White, Ana P G Silva, Jason K K Low, Ann H Kwan, Roland Gamsjaeger, James N Chalmers, Wayne M Patrick, Bin Lu, Christopher R Vakoc, Gerd Blobel, Joel P Mackay
Members of the bromodomain and extra-terminal domain (BET) family of proteins (bromodomain-containing (BRD) 2, 3, 4 and T) are widely expressed and highly conserved regulators of gene expression in eukaryotes. These proteins have been intimately linked to human disease and more than a dozen clinical trials are currently underway to test BET-protein inhibitors as modulators of cancer therapies. However, although it is clear that these proteins use their bromodomains to bind both histones and transcription factors bearing acetylated lysine residues, the molecular mechanisms by which BET-family proteins regulate gene expression are not well defined...
March 22, 2018: Journal of Biological Chemistry
https://www.readbyqxmd.com/read/29555663/targeting-bromodomain-and-extra-terminal-bet-family-proteins-in-castration-resistant-prostate-cancer-crpc
#4
Jonathan Welti, Adam Sharp, Wei Yuan, David I Dolling, Daniel Nava Rodrigues, Ines Figueiredo, Veronica Gil, Antje Neeb, Matthew Clarke, George Seed, Mateus Crespo, Semini Sumanasuriya, Jian Ning, Eleanor Knight, Jeffrey C Francis, Ashley Hughes, Wendy S Halsey, Alec Paschalis, Ram S Mani, Ganesh V Raj, Steve Plymate, Suzanne Carreira, Gunther Boysen, Arul M Chinnaiyan, Amanda Swain, Johann S de Bono
PURPOSE:  Persistent androgen receptor (AR) signaling drives castration resistant prostate cancer (CRPC) and confers resistance to AR targeting therapies. Novel therapeutic strategies to overcome this are urgently required. We evaluated how bromodomain and extra-terminal (BET) protein inhibitors (BETi) abrogate aberrant AR signaling in CRPC. EXPERIMENTAL DESIGN:  We determined associations between BET expression, AR driven transcription and patient outcome; and the effect and mechanism by which chemical BETi (JQ1 and GSK1210151A; I-BET151) and BET family protein knockdown regulates AR-V7 expression and AR signaling in prostate cancer (PC) models...
March 19, 2018: Clinical Cancer Research: An Official Journal of the American Association for Cancer Research
https://www.readbyqxmd.com/read/29540837/mir-3140-suppresses-tumor-cell-growth-by-targeting-brd4-via-its-coding-sequence-and-downregulates-the-brd4-nut-fusion-oncoprotein
#5
Erina Tonouchi, Yasuyuki Gen, Tomoki Muramatsu, Hidekazu Hiramoto, Kousuke Tanimoto, Jun Inoue, Johji Inazawa
Bromodomain Containing 4 (BRD4) mediates transcriptional elongation of the oncogene MYC by binding to acetylated histones. BRD4 has been shown to play a critical role in tumorigenesis in several cancers, and the BRD4-NUT fusion gene is a driver of NUT midline carcinoma (NMC), a rare but highly lethal cancer. microRNAs (miRNAs) are endogenous small non-coding RNAs that suppress target gene expression by binding to complementary mRNA sequences. Here, we show that miR-3140, which was identified as a novel tumor suppressive miRNA by function-based screening of a library containing 1090 miRNA mimics, directly suppressed BRD4 by binding to its coding sequence (CDS)...
March 14, 2018: Scientific Reports
https://www.readbyqxmd.com/read/29505757/lyar-mediated-recruitment-of-brd2-to-the-chromatin-attenuates-nanog-downregulation-following-induction-of-differentiation
#6
Noelia Luna-Peláez, Mario García-Domínguez
During development, cellular differentiation programs need of tight regulation for proper display of the activity of multiple factors in time and space. Chromatin adaptors of the BET family (Brd2, Brd3, Brd4 and Brdt in vertebrates) are transcription co-regulators tightly associated with the progression of the cell cycle. A key question regarding their function is whether they work as part of the general transcription machinery or, on the contrary, they are precisely recruited to the chromatin through specific transcription factors...
March 2, 2018: Journal of Molecular Biology
https://www.readbyqxmd.com/read/29493812/bet-proteins-in-abnormal-metabolism-inflammation-and-the-breast-cancer-microenvironment
#7
REVIEW
Guillaume P Andrieu, Jordan S Shafran, Jude T Deeney, Kishan R Bharadwaj, Annapoorni Rangarajan, Gerald V Denis
Obesity and its associated pathology Type 2 diabetes are two chronic metabolic and inflammatory diseases that promote breast cancer progression, metastasis, and poor outcomes. Emerging critical opinion considers unresolved inflammation and abnormal metabolism separately from obesity; settings where they do not co-occur can inform disease mechanism. In breast cancer, the tumor microenvironment is often infiltrated with T effector and T regulatory cells programmed by metabolic signaling. The pathways by which tumor cells evade immune surveillance, immune therapies, and take advantage of antitumor immunity are poorly understood, but likely depend on metabolic inflammation in the microenvironment...
March 1, 2018: Journal of Leukocyte Biology
https://www.readbyqxmd.com/read/29448097/selective-degradation-of-bet-proteins-with-dbet1-a-proteolysis-targeting-chimera-potently-reduces-pro-inflammatory-responses-in-lipopolysaccharide-activated-microglia
#8
Kelly M DeMars, Changjun Yang, Carolina I Castro-Rivera, Eduardo Candelario-Jalil
Bromodomain and extraterminal (BET) proteins are essential to pro-inflammatory gene transcription. The BET family proteins, BRD2, BRD3, BRD4, and testis-specific BRDT, couple chromatin remodeling to gene transcription, acting as histone acetyltransferases, scaffolds for transcription complexes, and markers of histone acetylation. To initiate an inflammatory response, cells undergo de novo gene transcription requiring histone-modifying proteins to make DNA wrapped around histones more or less readily available to transcription complexes...
February 12, 2018: Biochemical and Biophysical Research Communications
https://www.readbyqxmd.com/read/29437854/bet-proteins-exhibit-transcriptional-and-functional-opposition-in-the-epithelial-to-mesenchymal-transition
#9
Guillaume P Andrieu, Gerald V Denis
Transcriptional programs in embryogenesis and cancer, such as the epithelial-to-mesenchymal transition (EMT), ensure cellular plasticity, an essential feature of carcinoma progression. As effectors of signal transduction, the bromodomain and extraterminal (BET) proteins are well suited to support plasticity because they function as co-activators or co-repressors of mammalian transcriptomes. Here, using both hormone-sensitive and triple-negative breast cancer (TNBC) model systems, we systematically altered EMT transcriptional profiles by manipulating individual BET proteins and found that BRD2 positively regulates EMT, whereas BRD3 and BRD4 repress this program...
February 7, 2018: Molecular Cancer Research: MCR
https://www.readbyqxmd.com/read/29356890/patterns-of-care-and-impact-of-prognostic-factors-in-the-outcome-of-nut-midline-carcinoma-a-systematic-review-and-individual-patient-data-analysis-of-119-cases
#10
Prashanth Giridhar, Supriya Mallick, Lakhan Kashyap, Goura Kishor Rath
INTRODUCTION: NUT midline carcinoma is a rare tumour occurring in young adults which is frequently misdiagnosed as poorly differentiated squamous cell carcinoma or germ cell tumour. Though considered highly aggressive, there is limited information about the clinical behaviour of such patients. We intended to perform this review of published literature to assess the demographic profile, pattern of care and assess survival outcomes. METHODS: Two authors independently searched PubMed and Google search for eligible studies from 1950 till July 1 2017 published in English language using MESH terms NUT midline carcinoma; NUT midline carcinoma and radiotherapy and translocation 15:19 tumour...
March 2018: European Archives of Oto-rhino-laryngology
https://www.readbyqxmd.com/read/29356724/nutm1-gene-fusions-characterize-a-subset-of-undifferentiated-soft-tissue-and-visceral-tumors
#11
Brendan C Dickson, Yun-Shao Sung, Marc K Rosenblum, Victor E Reuter, Mohammed Harb, Jay S Wunder, David Swanson, Cristina R Antonescu
NUT midline carcinoma is an aggressive tumor that occurs mainly in the head and neck and, less frequently, the mediastinum and lung. Following identification of an index case of a NUTM1 fusion positive undifferentiated soft tissue tumor, we interrogated additional cases of primary undifferentiated soft tissue and visceral tumors for NUTM1 abnormalities. Targeted next-generation sequencing was performed on RNA extracted from formalin-fixed paraffin-embedded tissue, and results validated by fluorescence in situ hybridization using custom bacterial artificial chromosome probes...
May 2018: American Journal of Surgical Pathology
https://www.readbyqxmd.com/read/29240787/brd3-4-inhibition-and-flt3-ligand-deprivation-target-pathways-that-are-essential-for-the-survival-of-human-mll-af9-leukemic-cells
#12
Marco Carretta, Annet Z Brouwers-Vos, Matthieu Bosman, Sarah J Horton, Joost H A Martens, Edo Vellenga, Jan Jacob Schuringa
In the present work we aimed to identify targetable signaling networks in human MLL-AF9 leukemias. We show that MLL-AF9 cells critically depend on FLT3-ligand induced pathways as well as on BRD3/4 for their survival. We evaluated the in vitro and in vivo efficacy of the BRD3/4 inhibitor I-BET151 in various human MLL-AF9 (primary) models and patient samples and analyzed the transcriptome changes following treatment. To further understand the mode of action of BRD3/4 inhibition, we performed ChIP-seq experiments on the MLL-AF9 complex in THP1 cells and compared it to RNA-seq data of I-BET151 treated cells...
2017: PloS One
https://www.readbyqxmd.com/read/29196562/the-role-of-bromodomain-and-extraterminal-motif-bet-proteins-in-chromatin-structure
#13
Sarah C Hsu, Gerd A Blobel
Bromodomain and extraterminal motif (BET) proteins have been widely investigated for their roles in gene regulation and their potential as therapeutic targets in cancer. Pharmacologic BET inhibitors target the conserved bromodomain-acetyllysine interaction and do not distinguish between BRD2, BRD3, and BRD4. Thus, comparatively little is known regarding the distinct roles played by individual family members, as well as the underlying mechanisms that drive the transcriptional effects of BET inhibitors. Here we review studies regarding the contributions of BET proteins to genome structure and function, including recent work identifying a role for BRD2 as a component of functional and physical chromatin domain boundaries...
December 1, 2017: Cold Spring Harbor Symposia on Quantitative Biology
https://www.readbyqxmd.com/read/29170024/exploiting-a-water-network-to-achieve-enthalpy-driven-bromodomain-selective-bet-inhibitors
#14
William R Shadrick, Peter J Slavish, Sergio C Chai, Brett Waddell, Michele Connelly, Jonathan A Low, Cynthia Tallant, Brandon M Young, Nagakumar Bharatham, Stefan Knapp, Vincent A Boyd, Marie Morfouace, Martine F Roussel, Taosheng Chen, Richard E Lee, R Kiplin Guy, Anang A Shelat, Philip M Potter
Within the last decade, the Bromodomain and Extra-Terminal domain family (BET) of proteins have emerged as promising drug targets in diverse clinical indications including oncology, auto-immune disease, heart failure, and male contraception. The BET family consists of four isoforms (BRD2, BRD3, BRD4, and BRDT/BRDT6) which are distinguished by the presence of two tandem bromodomains (BD1 and BD2) that independently recognize acetylated-lysine (KAc) residues and appear to have distinct biological roles. BET BD1 and BD2 bromodomains differ at five positions near the substrate binding pocket: the variation in the ZA channel induces different water networks nearby...
January 1, 2018: Bioorganic & Medicinal Chemistry
https://www.readbyqxmd.com/read/28949335/the-bet-brd-inhibitor-jq1-improves-brain-plasticity-in-wt-and-app-mice
#15
E Benito, B Ramachandran, H Schroeder, G Schmidt, H Urbanke, S Burkhardt, V Capece, C Dean, A Fischer
Histone acetylation is essential for memory formation and its deregulation contributes to the pathogenesis of Alzheimer's disease. Thus, targeting histone acetylation is discussed as a novel approach to treat dementia. The histone acetylation landscape is shaped by chromatin writer and eraser proteins, while readers link chromatin state to cellular function. Chromatin readers emerged novel drug targets in cancer research but little is known about the manipulation of readers in the adult brain. Here we tested the effect of JQ1-a small-molecule inhibitor of the chromatin readers BRD2, BRD3, BRD4 and BRDT-on brain function and show that JQ1 is able to enhance cognitive performance and long-term potentiation in wild-type animals and in a mouse model for Alzheimer's disease...
September 26, 2017: Translational Psychiatry
https://www.readbyqxmd.com/read/28805822/intrinsic-bet-inhibitor-resistance-in-spop-mutated-prostate-cancer-is-mediated-by-bet-protein-stabilization-and-akt-mtorc1-activation
#16
Pingzhao Zhang, Dejie Wang, Yu Zhao, Shancheng Ren, Kun Gao, Zhenqing Ye, Shangqian Wang, Chun-Wu Pan, Yasheng Zhu, Yuqian Yan, Yinhui Yang, Di Wu, Yundong He, Jun Zhang, Daru Lu, Xiuping Liu, Long Yu, Shimin Zhao, Yao Li, Dong Lin, Yuzhuo Wang, Liguo Wang, Yu Chen, Yinghao Sun, Chenji Wang, Haojie Huang
Bromodomain and extraterminal domain (BET) protein inhibitors are emerging as promising anticancer therapies. The gene encoding the E3 ubiquitin ligase substrate-binding adaptor speckle-type POZ protein (SPOP) is the most frequently mutated in primary prostate cancer. Here we demonstrate that wild-type SPOP binds to and induces ubiquitination and proteasomal degradation of BET proteins (BRD2, BRD3 and BRD4) by recognizing a degron motif common among them. In contrast, prostate cancer-associated SPOP mutants show impaired binding to BET proteins, resulting in decreased proteasomal degradation and accumulation of these proteins in prostate cancer cell lines and patient specimens and causing resistance to BET inhibitors...
September 2017: Nature Medicine
https://www.readbyqxmd.com/read/28805821/opposing-effects-of-cancer-type-specific-spop-mutants-on-bet-protein-degradation-and-sensitivity-to-bet-inhibitors
#17
Hana Janouskova, Geniver El Tekle, Elisa Bellini, Namrata D Udeshi, Anna Rinaldi, Anna Ulbricht, Tiziano Bernasocchi, Gianluca Civenni, Marco Losa, Tanya Svinkina, Craig M Bielski, Gregory V Kryukov, Luciano Cascione, Sara Napoli, Radoslav I Enchev, David G Mutch, Michael E Carney, Andrew Berchuck, Boris J N Winterhoff, Russell R Broaddus, Peter Schraml, Holger Moch, Francesco Bertoni, Carlo V Catapano, Matthias Peter, Steven A Carr, Levi A Garraway, Peter J Wild, Jean-Philippe P Theurillat
It is generally assumed that recurrent mutations within a given cancer driver gene elicit similar drug responses. Cancer genome studies have identified recurrent but divergent missense mutations affecting the substrate-recognition domain of the ubiquitin ligase adaptor SPOP in endometrial and prostate cancers. The therapeutic implications of these mutations remain incompletely understood. Here we analyzed changes in the ubiquitin landscape induced by endometrial cancer-associated SPOP mutations and identified BRD2, BRD3 and BRD4 proteins (BETs) as SPOP-CUL3 substrates that are preferentially degraded by endometrial cancer-associated SPOP mutants...
September 2017: Nature Medicine
https://www.readbyqxmd.com/read/28805820/prostate-cancer-associated-spop-mutations-confer-resistance-to-bet-inhibitors-through-stabilization-of-brd4
#18
Xiangpeng Dai, Wenjian Gan, Xiaoning Li, Shangqian Wang, Wei Zhang, Ling Huang, Shengwu Liu, Qing Zhong, Jianping Guo, Jinfang Zhang, Ting Chen, Kouhei Shimizu, Francisco Beca, Mirjam Blattner, Divya Vasudevan, Dennis L Buckley, Jun Qi, Lorenz Buser, Pengda Liu, Hiroyuki Inuzuka, Andrew H Beck, Liewei Wang, Peter J Wild, Levi A Garraway, Mark A Rubin, Christopher E Barbieri, Kwok-Kin Wong, Senthil K Muthuswamy, Jiaoti Huang, Yu Chen, James E Bradner, Wenyi Wei
The bromodomain and extraterminal (BET) family of proteins comprises four members-BRD2, BRD3, BRD4 and the testis-specific isoform BRDT-that largely function as transcriptional coactivators and play critical roles in various cellular processes, including the cell cycle, apoptosis, migration and invasion. BET proteins enhance the oncogenic functions of major cancer drivers by elevating the expression of these drivers, such as c-Myc in leukemia, or by promoting the transcriptional activities of oncogenic factors, such as AR and ERG in prostate cancer...
September 2017: Nature Medicine
https://www.readbyqxmd.com/read/28733670/brd3-and-brd4-bet-bromodomain-proteins-differentially-regulate-skeletal-myogenesis
#19
Thomas C Roberts, Usue Etxaniz, Alessandra Dall'Agnese, Shwu-Yuan Wu, Cheng-Ming Chiang, Paul E Brennan, Matthew J A Wood, Pier Lorenzo Puri
Myogenic differentiation proceeds through a highly coordinated cascade of gene activation that necessitates epigenomic changes in chromatin structure. Using a screen of small molecule epigenetic probes we identified three compounds which inhibited myogenic differentiation in C2C12 myoblasts; (+)-JQ1, PFI-1, and Bromosporine. These molecules target Bromodomain and Extra Terminal domain (BET) proteins, which are epigenetic readers of acetylated histone lysine tail residues. BETi-mediated anti-myogenic effects were also observed in a model of MYOD1-mediated myogenic conversion of human fibroblasts, and in primary mouse and human myoblasts...
July 21, 2017: Scientific Reports
https://www.readbyqxmd.com/read/28710461/bromodomain-factors-of-bet-family-are-new-essential-actors-of-pericentric-heterochromatin-transcriptional-activation-in-response-to-heat-shock
#20
Edwige Col, Neda Hoghoughi, Solenne Dufour, Jessica Penin, Sivan Koskas, Virginie Faure, Maria Ouzounova, Hector Hernandez-Vargash, Nicolas Reynoird, Sylvain Daujat, Eric Folco, Marc Vigneron, Robert Schneider, André Verdel, Saadi Khochbin, Zdenko Herceg, Cécile Caron, Claire Vourc'h
The heat shock response is characterized by the transcriptional activation of both hsp genes and noncoding and repeated satellite III DNA sequences located at pericentric heterochromatin. Both events are under the control of Heat Shock Factor I (HSF1). Here we show that under heat shock, HSF1 recruits major cellular acetyltransferases, GCN5, TIP60 and p300 to pericentric heterochromatin leading to a targeted hyperacetylation of pericentric chromatin. Redistribution of histone acetylation toward pericentric region in turn directs the recruitment of Bromodomain and Extra-Terminal (BET) proteins BRD2, BRD3, BRD4, which are required for satellite III transcription by RNAP II...
July 14, 2017: Scientific Reports
keyword
keyword
111904
1
2
Fetch more papers »
Fetching more papers... Fetching...
Read by QxMD. Sign in or create an account to discover new knowledge that matter to you.
Remove bar
Read by QxMD icon Read
×

Search Tips

Use Boolean operators: AND/OR

diabetic AND foot
diabetes OR diabetic

Exclude a word using the 'minus' sign

Virchow -triad

Use Parentheses

water AND (cup OR glass)

Add an asterisk (*) at end of a word to include word stems

Neuro* will search for Neurology, Neuroscientist, Neurological, and so on

Use quotes to search for an exact phrase

"primary prevention of cancer"
(heart or cardiac or cardio*) AND arrest -"American Heart Association"