Read by QxMD icon Read


Pei Y Liu, Nicholas Sokolowski, Su T Guo, Faraz Siddiqi, Bernard Atmadibrata, Thomas J Telfer, Yuting Sun, Lihong Zhang, Denise Yu, Joshua Mccarroll, Bing Liu, Rui H Yang, Xiang Y Guo, Andrew E Tee, Ken Itoh, Jenny Wang, Maria Kavallaris, Michelle Haber, Murray D Norris, Belamy B Cheung, Jennifer A Byrne, David S Ziegler, Glenn M Marshall, Marcel E Dinger, Rachel Codd, Xu D Zhang, Tao Liu
BET bromodomain inhibitors are very promising novel anticancer agents, however, single therapy does not cause tumor regression in mice, suggesting the need for combination therapy. After screening a library of 2697 small molecule compounds, we found that two classes of compounds, the quinone-containing compounds such as nanaomycin and anti-microtubule drugs such as vincristine, exerted the best synergistic anticancer effects with the BET bromodomain inhibitor JQ1 in neuroblastoma cells. Mechanistically, the quinone-containing compound nanaomycin induced neuroblastoma cell death but also activated the Nrf2-antioxidant signaling pathway, and the BET bromodomain proteins BRD3 and BRD4 formed a protein complex with Nrf2...
October 13, 2016: Oncotarget
Wenhui Ren, Donghao Sun, Chunmei Wang, Nan Li
Objective To investigate the role of bromodomain containing 3 (Brd3) in LPS-triggered interleukin-6 (IL-6) production in macrophages and the underlying mechanism. Methods CRISPR-Cas9 technology was used to screen an RAW264.7 cell line with Brd3 knockout (Brd3(-/-)). The Brd3(-/-) cells were used as an experimental group, and the parential cells expressing wide-type Brd3 as a control group. The IL-6 level in cell culture supernatant was detected by ELISA after 100 ng/mL LPS challenging. Effect of Brd3 knockout on the expression and activation of signal pathways involved in IL-6 expression, including the NF-κB and mitogen-activated protein kinase (MAPK) pathways were examined by Western blot analysis...
October 2016: Xi Bao Yu Fen Zi Mian Yi Xue za Zhi, Chinese Journal of Cellular and Molecular Immunology
Guillaume Andrieu, Anna H Tran, Katherine J Strissel, Gerald V Denis
The Bromodomain and ExtraTerminal (BET) proteins are epigenetic 'readers' of acetylated histones in chromatin and have been identified as promising therapeutic targets in diverse cancers. However, it remains unclear how individual family members participate in cancer progression, and small molecule inhibitors such as JQ1 can target functionally independent BET proteins. Here we report a signaling pathway involving BRD4 and the ligand/receptor pair Jagged1/Notch1 that sustains triple-negative breast cancer migration and invasion...
September 20, 2016: Cancer Research
Jingjun Li, Jing Ma, Guofeng Meng, Hong Lin, Sharon Wu, Jamie Wang, Jie Luo, Xiaohong Xu, David Tough, Matthew Lindon, Inma Rioja Pastor, Jing Zhao, Hongkang Mei, Rab Prinjha, Zhong Zhong
Neural stem cells and progenitor cells (NPCs) are increasingly appreciated to hold great promise for regenerative medicine to treat CNS injuries and neurodegenerative diseases. However, evidence for effective stimulation of neuronal production from endogenous or transplanted NPCs for neuron replacement with small molecules remains limited. To identify novel chemical entities/targets for neurogenesis, we had established a NPC phenotypic screen assay and validated it using known small-molecule neurogenesis inducers...
July 20, 2016: Stem Cell Research
C A French
BET proteins have recently become recognized for their role in a broad range of cancers and are defined by the presence of two acetyl-histone reading bromodomains and an ET domain. This family of proteins includes BRD2, BRD3, BRD4, and BRDT. BRD4 is the most-studied BET protein in cancer, and normally serves as an epigenetic reader that links active chromatin marks to transcriptional elongation through activation of RNA polymerase II. The role of BRD3 and BRD4 first became known in cancer as mutant oncoproteins fused to the p300-recruiting NUT protein in a rare aggressive subtype of squamous cell cancer known as NUT midline carcinoma (NMC)...
2016: Advances in Cancer Research
Yinshi Huang, Sabikun Nahar, Akifumi Nakagawa, Maite G Fernandez-Barrena, Jennifer A Mertz, Barbara M Bryant, Curtis E Adams, Mari Mino-Kenudson, Kate N Von Alt, Kevin Chang, Andrew R Conery, Charlie Hatton, Robert J Sims, Martin E Fernandez-Zapico, Xingpeng Wang, Keith D Lillemoe, Carlos Fernández-Del Castillo, Andrew L Warshaw, Sarah P Thayer, Andrew S Liss
PURPOSE: The initiation, progression, and maintenance of pancreatic ductal adenocarcinoma (PDAC) results from the interplay of genetic and epigenetic events. While the genetic alterations of PDAC have been well characterized, epigenetic pathways regulating PDAC remain, for the most part, elusive. The goal of this study was to identify novel epigenetic regulators contributing to the biology of PDAC. EXPERIMENTAL DESIGN: In vivo pooled shRNA screens targeting 118 epigenetic proteins were performed in two orthotopic PDAC xenograft models...
August 15, 2016: Clinical Cancer Research: An Official Journal of the American Association for Cancer Research
Martin Hügle, Xavier Lucas, Gerhard Weitzel, Dmytro Ostrovskyi, Bernhard Breit, Stefan Gerhardt, Karin Schmidtkunz, Manfred Jung, Roland Schüle, Oliver Einsle, Stefan Günther, Daniel Wohlwend
This article presents detailed purification procedures for the bromodomains BRD3(1), BRD3(2), BRD4(1), and BRPF1B. In addition we provide crystallization protocols for apo BRD4(1) and BRD4(1) in complex with numerous inhibitors. The protocols described here were successfully applied to obtain affinity data by isothermal titration calorimetry (ITC) and by differential scanning fluorimetry (DSF) as well as structural characterizations of BRD4(1) inhibitor complexes (PDB codes: PDB: 4LYI, PDB: 4LZS, PDB: 4LYW, PDB: 4LZR, PDB: 4LYS, PDB: 5D24, PDB: 5D25, PDB: 5D26, PDB: 5D3H, PDB: 5D3J, PDB: 5D3L, PDB: 5D3N, PDB: 5D3P, PDB: 5D3R, PDB: 5D3S, PDB: 5D3T)...
June 2016: Data in Brief
Dong U Lee, Paula Katavolos, Gopinath Palanisamy, Arna Katewa, Charly Sioson, Janice Corpuz, Jodie Pang, Kevin DeMent, Edna Choo, Nico Ghilardi, Dolores Diaz, Dimitry M Danilenko
Bromo and extra terminal (BET) proteins (BRD2, BRD3, BRD4 and BRDT) are epigenetic transcriptional regulators required for efficient expression of growth promoting, cell cycle progression and antiapoptotic genes. Through their bromodomain, these proteins bind to acetylated lysine residues of histones and are recruited to transcriptionally active chromatin. Inhibition of the BET-histone interaction provides a tractable therapeutic strategy to treat diseases that may have epigenetic dysregulation. JQ1 is a small molecule that blocks BET interaction with histones...
June 1, 2016: Toxicology and Applied Pharmacology
Sandy Amorim, Anastasios Stathis, Mary Gleeson, Sunil Iyengar, Valeria Magarotto, Xavier Leleu, Franck Morschhauser, Lionel Karlin, Florence Broussais, Keyvan Rezai, Patrice Herait, Carmen Kahatt, François Lokiec, Gilles Salles, Thierry Facon, Antonio Palumbo, David Cunningham, Emanuele Zucca, Catherine Thieblemont
BACKGROUND: The first-in-class small molecule inhibitor OTX015 (MK-8628) specifically binds to bromodomain motifs BRD2, BRD3, and BRD4 of bromodomain and extraterminal (BET) proteins, inhibiting them from binding to acetylated histones, which occurs preferentially at super-enhancer regions that control oncogene expression. OTX015 is active in haematological preclinical entities including leukaemia, lymphoma, and myeloma. We aimed to establish the recommended dose of OTX015 in patients with haematological malignancies...
April 2016: Lancet Haematology
Céline Berthon, Emmanuel Raffoux, Xavier Thomas, Norbert Vey, Carlos Gomez-Roca, Karen Yee, David Christopher Taussig, Keyvan Rezai, Christophe Roumier, Patrice Herait, Carmen Kahatt, Bruno Quesnel, Mauricette Michallet, Christian Recher, François Lokiec, Claude Preudhomme, Hervé Dombret
BACKGROUND: Bromodomain and extraterminal (BET) proteins are chromatin readers that preferentially affect the transcription of genes with super-enhancers, including oncogenes. BET proteins bind acetylated histone tails via their bromodomain, bringing the elongation complex to the promoter region. OTX015 (MK-8628) specifically binds to BRD2, BRD3, and BRD4, preventing BET proteins from binding to the chromatin, thus inhibiting gene transcription. OTX015 inhibits proliferation in many haematological malignancy cell lines and patient cells, in vitro and in vivo...
April 2016: Lancet Haematology
Jude T Deeney, Anna C Belkina, Orian S Shirihai, Barbara E Corkey, Gerald V Denis
Displacement of Bromodomain and Extra-Terminal (BET) proteins from chromatin has promise for cancer and inflammatory disease treatments, but roles of BET proteins in metabolic disease remain unexplored. Small molecule BET inhibitors, such as JQ1, block BET protein binding to acetylated lysines, but lack selectivity within the BET family (Brd2, Brd3, Brd4, Brdt), making it difficult to disentangle contributions of each family member to transcriptional and cellular outcomes. Here, we demonstrate multiple improvements in pancreatic β-cells upon BET inhibition with JQ1 or BET-specific siRNAs...
2016: PloS One
Zhicheng Shao, Ruowen Zhang, Alireza Khodadadi-Jamayran, Bo Chen, Michael R Crowley, Muhamad A Festok, David K Crossman, Tim M Townes, Kejin Hu
It is well known that both recipient cells and donor nuclei demonstrate a mitotic advantage as observed in the traditional reprogramming with somatic cell nuclear transfer (SCNT). However, it is not known whether a specific mitotic factor plays a critical role in reprogramming. Here we identify an isoform of human bromodomain-containing 3 (BRD3), BRD3R (BRD3 with Reprogramming activity), as a reprogramming factor. BRD3R positively regulates mitosis during reprogramming, upregulates a large set of mitotic genes at early stages of reprogramming, and associates with mitotic chromatin...
2016: Nature Communications
Jeyran Shahbazi, Pei Y Liu, Bernard Atmadibrata, James E Bradner, Glenn M Marshall, Richard B Lock, Tao Liu
PURPOSE: Patients with neuroblastoma associated with MYCN oncogene amplification experience a very poor prognosis. BET bromodomain inhibitors are among the most promising novel anticancer agents as they block BRD3 and BRD4 from activating oncogene transcription. However, treatment with BET bromodomain inhibitors alone does not result in cancer remission in many murine models. EXPERIMENTAL DESIGN: MYCN-amplified neuroblastoma cells were treated with vehicle control, the BET bromodomain inhibitor JQ1, the histone deacetylase inhibitor panobinostat, or the combination of JQ1 and panobinostat...
May 15, 2016: Clinical Cancer Research: An Official Journal of the American Association for Cancer Research
Yangli Sun, Jie Huang, Kunpeng Song
Acute myocardial infarction (AMI) is among the most serious cardiovascular diseases and is a leading cause of mortality in developed countries. Previous studies have indicated the central role played by the bromodomain (BRD) proteins, which belong to the BRD and extra-terminal (BET) family, in gene control during heart failure pathogenesis. In addition, BET inhibition has been shown to suppress cardiomyocyte hypertrophy. However, the role of BET proteins in myocardial infarction remains unclear. The present study aimed to investigate whether BETs inhibition mitigates AMI, and explore the molecular mechanism underlying this effect...
December 2015: Experimental and Therapeutic Medicine
Tim Hensel, Chiara Giorgi, Oxana Schmidt, Julia Calzada-Wack, Frauke Neff, Thorsten Buch, Felix K Niggli, Beat W Schäfer, Stefan Burdach, Günther H S Richter
Ewing sarcomas (ES) are highly malignant bone or soft tissue tumors. Genetically, ES are defined by balanced chromosomal EWS/ETS translocations, which give rise to chimeric proteins (EWS-ETS) that generate an oncogenic transcriptional program associated with altered epigenetic marks throughout the genome. By use of an inhibitor (JQ1) blocking BET bromodomain binding proteins (BRDs) we strikingly observed a strong down-regulation of the predominant EWS-ETS protein EWS-FLI1 in a dose dependent manner. This was further enhanced by co-treatment with an inhibitor of the PI3K pathway...
January 12, 2016: Oncotarget
Gregory C Sartor, Samuel K Powell, Shaun P Brothers, Claes Wahlestedt
UNLABELLED: Epigenetic processes that regulate histone acetylation play an essential role in behavioral and molecular responses to cocaine. To date, however, only a small fraction of the mechanisms involved in the addiction-associated acetylome have been investigated. Members of the bromodomain and extraterminal (BET) family of epigenetic "reader" proteins (BRD2, BRD3, BRD4, and BRDT) bind acetylated histones and serve as a scaffold for the recruitment of macromolecular complexes to modify chromatin accessibility and transcriptional activity...
November 11, 2015: Journal of Neuroscience: the Official Journal of the Society for Neuroscience
Youjun Xiao, Liuqin Liang, Mingcheng Huang, Qian Qiu, Shan Zeng, Maohua Shi, Yaoyao Zou, Yujin Ye, Xiuyan Yang, Hanshi Xu
OBJECTIVE: To explore the roles of the bromodomain (Brd) and extra-terminal domain (BET) of chromatin adaptors in regulating synovial inflammation in RA. METHODS: Fibroblast-like synoviocytes (FLSs) were isolated from synovial tissue from RA patients. A specific BET inhibitor, JQ1, and short hairpin RNA (shRNA) for Brd2 or Brd4 were used to evaluate the role of the BET Brd in inflammatory responses. Protein expression was measured by western blot or immunofluorescence staining...
January 2016: Rheumatology
Xu Ran, Yujun Zhao, Liu Liu, Longchuan Bai, Chao-Yie Yang, Bing Zhou, Jennifer L Meagher, Krishnapriya Chinnaswamy, Jeanne A Stuckey, Shaomeng Wang
Small-molecule inhibitors of bromodomain and extra terminal proteins (BET), including BRD2, BRD3, and BRD4 proteins have therapeutic potential for the treatment of human cancers and other diseases and conditions. In this paper, we report the design, synthesis, and evaluation of γ-carboline-containing compounds as a new class of small-molecule BET inhibitors. The most potent inhibitor (compound 18, RX-37) obtained from this study binds to BET bromodomain proteins (BRD2, BRD3, and BRD4) with Ki values of 3.2-24...
June 25, 2015: Journal of Medicinal Chemistry
Michael Zengerle, Kwok-Ho Chan, Alessio Ciulli
The Bromo- and Extra-Terminal (BET) proteins BRD2, BRD3, and BRD4 play important roles in transcriptional regulation, epigenetics, and cancer and are the targets of pan-BET selective bromodomain inhibitor JQ1. However, the lack of intra-BET selectivity limits the scope of current inhibitors as probes for target validation and could lead to unwanted side effects or toxicity in a therapeutic setting. We designed Proteolysis Targeted Chimeras (PROTACs) that tether JQ1 to a ligand for the E3 ubiquitin ligase VHL, aimed at triggering the intracellular destruction of BET proteins...
August 21, 2015: ACS Chemical Biology
Lynette M Sholl, Mizuki Nishino, Saraswati Pokharel, Mari Mino-Kenudson, Christopher A French, Pasi A Janne, Christopher Lathan
NUT midline carcinoma (NMC) is a poorly differentiated tumor typically driven by a t(15;19) rearrangement leading to a NUT fusion event. This rare and uniformly fatal tumor arises in multiple organ sites; however the clinical, radiographic, and pathologic characteristics of primary pulmonary NMC are poorly defined. We identified eight cases of primary pulmonary NMC in our consult practice over 4 years and, using a NUT immunohistochemistry screen, retrospectively identified one additional case from 166 (0.6%) consecutive in-house biopsies of lung carcinomas lacking glandular differentiation...
June 2015: Journal of Thoracic Oncology
Fetch more papers »
Fetching more papers... Fetching...
Read by QxMD. Sign in or create an account to discover new knowledge that matter to you.
Remove bar
Read by QxMD icon Read

Search Tips

Use Boolean operators: AND/OR

diabetic AND foot
diabetes OR diabetic

Exclude a word using the 'minus' sign

Virchow -triad

Use Parentheses

water AND (cup OR glass)

Add an asterisk (*) at end of a word to include word stems

Neuro* will search for Neurology, Neuroscientist, Neurological, and so on

Use quotes to search for an exact phrase

"primary prevention of cancer"
(heart or cardiac or cardio*) AND arrest -"American Heart Association"