Read by QxMD icon Read


Mariane S Sousa-Baena, Neelima R Sinha, José Hernandes-Lopes, Lúcia G Lohmann
Climbers are abundant in tropical forests, where they constitute a major functional plant type. The acquisition of the climbing habit in angiosperms constitutes a key innovation. Successful speciation in climbers is correlated with the development of specialized climbing strategies such as tendrils, i.e., filiform organs with the ability to twine around other structures through helical growth. Tendrils are derived from a variety of morphological structures, e.g., stems, leaves, and inflorescences, and are found in various plant families...
2018: Frontiers in Plant Science
Ryan A Folk, Miao Sun, Pamela S Soltis, Stephen A Smith, Douglas E Soltis, Robert P Guralnick
Using phylogenetic approaches to test hypotheses on a large scale, in terms of both species sampling and associated species traits and occurrence data-and doing this with rigor despite all the attendant challenges-is critical for addressing many broad questions in evolution and ecology. However, application of such approaches to empirical systems is hampered by a lingering series of theoretical and practical bottlenecks. The community is still wrestling with the challenges of how to develop species-level, comprehensively sampled phylogenies and associated geographic and phenotypic resources that enable global-scale analyses...
April 17, 2018: American Journal of Botany
Matthew B Parks, Teofil Nakov, Elizabeth C Ruck, Norman J Wickett, Andrew J Alverson
PREMISE OF THE STUDY: Diatoms are one of the most species-rich lineages of microbial eukaryotes. Similarities in clade age, species richness, and primary productivity motivate comparisons to angiosperms, whose genomes have been inordinately shaped by whole-genome duplication (WGD). WGDs have been linked to speciation, increased rates of lineage diversification, and identified as a principal driver of angiosperm evolution. We synthesized a large but scattered body of evidence that suggests polyploidy may be common in diatoms as well...
April 17, 2018: American Journal of Botany
Veit Martin Dörken, Bernard Lepetit
Morphology, anatomy and physiology of sun and shade leaves of Abies alba were investigated and major differences were identified, such as sun leaves being larger, containing a hypodermis and palisade parenchyma as well as possessing more stomata, while shade leaves exhibit a distinct leaf dimorphism. The large size of sun leaves and their arrangement crowded on the upper side of a plagiotropic shoot leads to self-shading which is explainable as protection from high solar radiation and to reduce the transpiration via the lamina...
April 17, 2018: Plant, Cell & Environment
Gregory W Stull, Melanie Schori, Douglas E Soltis, Pamela S Soltis
PREMISE OF THE STUDY: Our current understanding of flowering plant phylogeny provides an excellent framework for exploring various aspects of character evolution through comparative analyses. However, attempts to synthesize this phylogenetic framework with extensive morphological data sets have been surprisingly rare. Here, we explore character evolution in Asteridae (asterids), a major angiosperm clade, using an extensive morphological data set and a well-resolved phylogeny. METHODS: We scored 15 phenotypic characters (spanning chemistry, vegetative anatomy, and floral, fruit, and seed features) across 248 species for ancestral state reconstruction using a phylogenetic framework based on 73 plastid genes and the same 248 species...
April 14, 2018: American Journal of Botany
Pauline Asami, Sagadevan Mundree, Brett Williams
Plants constantly respond to threats in their environment by balancing their energy needs with growth, defence and survival. Some plants such as the small group of resilient angiosperms, the resurrection plants, do this better than most. Resurrection plants possess the capacity to tolerate desiccation in vegetative tissue and upon watering, regain full metabolic capacity within 72 h. Knowledge of how these plants survive such extremes has advanced in the last few decades, but the molecular mechanics remain elusive...
June 2018: Plant Science: An International Journal of Experimental Plant Biology
Patrick P Edger, Michael R McKain, Kevin A Bird, Robert VanBuren
Whole genome duplications (WGDs), also known as polyploid events, have played a crucial role in the evolutionary success of angiosperms across recent and ancient timescales. A recurrent observation from the analysis of allopolyploids is that one of the parental subgenomes is generally more dominant, referred to as 'subgenome dominance', based on higher gene content and expression patterns. Subgenome dominance has far reaching implications to research areas ranging from crop improvement efforts to evolutionary and ecological studies...
April 9, 2018: Current Opinion in Plant Biology
Polliana Silva Rodrigues, Margarete Magalhães Souza, Cláusio Antônio Ferreira Melo, Telma Nair Santana Pereira, Ronan Xavier Corrêa
BACKGROUND: The Leguminosae family is the third-largest family of angiosperms, and Caesalpinioideae is its second-largest subfamily. A great number of species (approximately 205) are found in the Caesalpinia group within this subfamily; together with these species' phenotypic plasticity and the similarities in their morphological descriptors, make this a complex group for taxonomic and phylogenetic studies. The objective of the present work was to evaluate the karyotypic diversity and the 2C DNA content variation in 10 species of the Caesalpinia group, representing six genera: Paubrasilia, Caesalpinia, Cenostigma, Poincianella, Erythrostemon and Libidibia...
April 11, 2018: BMC Genetics
Ruiting Gu, Yi Zhou, Xiaoyue Song, Shaochun Xu, Xiaomei Zhang, Haiying Lin, Shuai Xu, Shidong Yue, Shuyu Zhu
Seeds are important materials for the restoration of globally-threatened marine angiosperm (seagrass) populations. In this study, we investigated the differences between different Ruppia sinensis seed types and developed two feasible long-term R. sinensis seed storage methods. The ability of R. sinensis seeds to tolerate the short-term desiccation and extreme cold had been investigated. The tolerance of R. sinensis seeds to long-term exposure of high salinity, cold temperature, and desiccation had been considered as potential methods for long-term seed storage...
2018: Frontiers in Plant Science
Takashi Akagi, Isabelle Marie Henry, Haruka Ohtani, Takuya Morimoto, Kenji Beppu, Ikuo Kataoka, Ryutaro Tao
Dioecy, the presence of male and female flowers on distinct individuals, has evolved independently in multiple plant lineages and the genes involved in this differential development are just starting to be uncovered in a few species. Here, we used genomic approaches to investigate this pathway in kiwifruits (genus Actinidia). Genome-wide cataloging of male-specific subsequences, combined with transcriptome analysis, led to the identification of a type-C cytokinin response regulator as a potential sex determinant gene in this genus...
April 6, 2018: Plant Cell
Nikita Maksimov, Anastasia Evmenyeva, Maria Breygina, Igor Yermakov
Endogenous ROS, including those produced by NADPH oxidase, are required for spruce pollen germination and regulate membrane potential in pollen tubes; [Formula: see text] and H2 O2 are unevenly distributed along the tube. Recently, the key role of reactive oxygen species (ROS) in plant reproduction has been decisively demonstrated for angiosperms. This paper is dedicated to the involvement of ROS in pollen germination of gymnosperms, which remained largely unknown. We found that ROS are secreted from pollen grains of blue spruce during the early stage of activation...
April 4, 2018: Plant Reproduction
Kyria Roessler, Alexandros Bousios, Esteban Meca, Brandon S Gaut
Transposable elements (TEs) compose the majority of angiosperm DNA. Plants counteract TE activity by silencing them epigenetically. One form of epigenetic silencing requires 21-22 nt small interfering RNAs that act to degrade TE mRNA and may also trigger DNA methylation. DNA methylation is reinforced by a second mechanism, the RNA-dependent DNA methylation (RdDM) pathway. RdDM relies on 24 nt small interfering RNAs and ultimately establishes TEs in a quiescent state. These host factors interact at a systems level, but there have been no system level analyses of their interactions...
March 1, 2018: Genome Biology and Evolution
Adam B Roddy, Kevin A Simonin, Katherine A McCulloh, Craig R Brodersen, Todd E Dawson
For most angiosperms, producing and maintaining flowers is critical to sexual reproduction, yet little is known about the physiological processes involved in maintaining flowers throughout anthesis. Among extant species, flowers of the genus Calycanthus have the highest hydraulic conductance and vein densities of species measured to date, yet they can wilt by late morning under hot conditions. Here, we combine diurnal measurements of gas exchange and water potential, pressure-volume relations, functional responses of gas exchange, and characterization of embolism formation using high resolution X-ray computed microtomography to determine drought responses of Calycanthus flowers...
March 30, 2018: Plant, Cell & Environment
Amy E Zanne, William D Pearse, William K Cornwell, Daniel J McGlinn, Ian J Wright, Josef C Uyeda
Nonlinear relationships between species and their environments are believed common in ecology and evolution, including during angiosperms' rise to dominance. Early angiosperms are thought of as woody evergreens restricted to warm, wet habitats. They have since expanded into numerous cold and dry places. This expansion may have included transitions across important environmental thresholds. To understand linear and nonlinear relationships between angiosperm structure and biogeographic distributions, we integrated large datasets of growth habits, conduit sizes, leaf phenologies, evolutionary histories, and environmental limits...
March 30, 2018: New Phytologist
Li Yuan, Zhenning Liu, Xiaoya Song, Judy Jernstedt, Venkatesan Sundaresan
A defining feature of angiosperms is double fertilization involving the female gametophyte central cell and formation of a nutrient-storing tissue called endosperm. The route for the evolutionary origin of endosperm from a gymnosperm ancestor, particularly the molecular steps involved, has remained elusive. Recently, the histidine kinase gene Cytokinin-Independent 1 (CKI1), an activator of cytokinin signaling, was described as a key to specification of the endosperm precursor central cell in Arabidopsis. Here, we have investigated the function and expression of a putative ortholog of CKI1 in the gymnosperm Ginkgo biloba...
March 30, 2018: New Phytologist
Sean M Gleason, Chris J Blackman, Scott T Gleason, Katherine A McCulloh, Troy W Ocheltree, Mark Westoby
Water transport in leaf vasculature is a fundamental process affecting plant growth, ecological interactions and ecosystem productivity, yet the architecture of leaf vascular networks is poorly understood. Although Murray's law and the West-Brown-Enquist (WBE) theories predict convergent scaling of conduit width and number, it is not known how conduit scaling is affected by habitat aridity or temperature. We measured the scaling of leaf size, conduit width and conduit number within the leaves of 36 evergreen Angiosperms spanning a large range in aridity and temperature in eastern Australia...
March 30, 2018: New Phytologist
Matthew A Gitzendanner, Pamela S Soltis, Gane K-S Wong, Brad R Ruhfel, Douglas E Soltis
PREMISE OF THE STUDY: For the past one billion years, green plants (Viridiplantae) have dominated global ecosystems, yet many key branches in their evolutionary history remain poorly resolved. Using the largest analysis of Viridiplantae based on plastid genome sequences to date, we examined the phylogeny and implications for morphological evolution at key nodes. METHODS: We analyzed amino acid sequences from protein-coding genes from complete (or nearly complete) plastomes for 1879 taxa, including representatives across all major clades of Viridiplantae...
March 30, 2018: American Journal of Botany
Daniel Hering, Angel Borja, J Iwan Jones, Didier Pont, Pieter Boets, Agnes Bouchez, Kat Bruce, Stina Drakare, Bernd Hänfling, Maria Kahlert, Florian Leese, Kristian Meissner, Patricia Mergen, Yorick Reyjol, Pedro Segurado, Alfried Vogler, Martyn Kelly
Assessment of ecological status for the European Water Framework Directive (WFD) is based on "Biological Quality Elements" (BQEs), namely phytoplankton, benthic flora, benthic invertebrates and fish. Morphological identification of these organisms is a time-consuming and expensive procedure. Here, we assess the options for complementing and, perhaps, replacing morphological identification with procedures using eDNA, metabarcoding or similar approaches. We rate the applicability of DNA-based identification for the individual BQEs and water categories (rivers, lakes, transitional and coastal waters) against eleven criteria, summarised under the headlines representativeness (for example suitability of current sampling methods for DNA-based identification, errors from DNA-based species detection), sensitivity (for example capability to detect sensitive taxa, unassigned reads), precision of DNA-based identification (knowledge about uncertainty), comparability with conventional approaches (for example sensitivity of metrics to differences in DNA-based identification), cost effectiveness and environmental impact...
March 20, 2018: Water Research
Kangquan Yin, Yue Zhang, Yuejuan Li, Fang K Du
Quercus is an economically important and phylogenetically complex genus in the family Fagaceae. Due to extensive hybridization and introgression, it is considered to be one of the most challenging plant taxa, both taxonomically and phylogenetically. Quercus aquifolioides is an evergreen sclerophyllous oak species that is endemic to, but widely distributed across, the Hengduanshan Biodiversity Hotspot in the Eastern Himalayas. Here, we compared the fully assembled chloroplast (cp) genome of Q. aquifolioides with those of three closely related species...
March 30, 2018: International Journal of Molecular Sciences
Hongtao Song, Kui Lin, Jinglu Hu, Erli Pang
Background: Although the cucumber reference genome and its annotation were published several years ago, the functional annotation of predicted genes, particularly protein-coding genes, still requires further improvement. In general, accurately determining orthologous relationships between genes allows for better and more robust functional assignments of predicted genes. As one of the most reliable strategies, the determination of collinearity information may facilitate reliable orthology inferences among genes from multiple related genomes...
2018: Frontiers in Plant Science
Fetch more papers »
Fetching more papers... Fetching...
Read by QxMD. Sign in or create an account to discover new knowledge that matter to you.
Remove bar
Read by QxMD icon Read

Search Tips

Use Boolean operators: AND/OR

diabetic AND foot
diabetes OR diabetic

Exclude a word using the 'minus' sign

Virchow -triad

Use Parentheses

water AND (cup OR glass)

Add an asterisk (*) at end of a word to include word stems

Neuro* will search for Neurology, Neuroscientist, Neurological, and so on

Use quotes to search for an exact phrase

"primary prevention of cancer"
(heart or cardiac or cardio*) AND arrest -"American Heart Association"