Read by QxMD icon Read

Aminopeptidase N insect

Mary-Carmen Torres-Quintero, Isabel Gómez, Sabino Pacheco, Jorge Sánchez, Humberto Flores, Joel Osuna, Gretel Mendoza, Mario Soberón, Alejandra Bravo
The Cyt and Cry toxins are different pore-forming proteins produced by Bacillus thuringiensis bacteria, and used in insect-pests control. Cry-toxins have a complex mechanism involving interaction with several proteins in the insect gut such as aminopeptidase N (APN), alkaline phosphatase (ALP) and cadherin (CAD). It was shown that the loop regions of domain II of Cry toxins participate in receptor binding. Cyt-toxins are dipteran specific and interact with membrane lipids. We show that Cry1Ab domain II loop3 is involved in binding to APN, ALP and CAD receptors since point mutation Cry1Ab-G439D affected binding to these proteins...
March 21, 2018: Scientific Reports
Ensi Shao, Li Lin, Sijun Liu, Jiao Zhang, Xuelin Chen, Li Sha, Zhipeng Huang, Biwang Huang, Xiong Guan
The brown planthopper (BPH) Nilaparvata lugens is one of the most destructive insect pests in the rice fields of Asia. Like other hemipteran insects, BPH is not susceptible to Cry toxins of Bacillus thuringiensis (Bt) or transgenic rice carrying Bt cry genes. Lack of Cry receptors in the midgut is one of the main reasons that BPH is not susceptible to the Cry toxins. The main Cry-binding proteins (CBPs) of the susceptible insects are cadherin, aminopeptidase N (APN), and alkaline phosphatase (ALP). In this study, we analyzed and validated de novo assembled transcripts from transcriptome sequencing data of BPH to identify and characterize homologs of cadherin, APN, and ALP...
February 5, 2018: Journal of Insect Science
Yakun Zhang, Dan Zhao, Xiaoping Yan, Wei Guo, Yajun Bao, Wei Wang, Xiaoyun Wang
The fall webworm, Hyphantria cunea (Drury) is a major invasive pest in China. Aminopeptidase N (APN) isoforms in lepidopteran larvae midguts are known for their involvement in the mode of action of insecticidal crystal (Cry) proteins from Bacillus thuringiensis . In the present work, we identified a putative Cry1Ab toxin-binding protein, an APN isoform designated HcAPN3, in the midgut of H. cunea by ligand blot and mass spectrometry. HcAPN3 was highly expressed throughout all larval developmental stages and was abundant in the midgut and hindgut tissues...
November 30, 2017: International Journal of Molecular Sciences
Hai-Jian Huang, Jia-Bao Lu, Qiao Li, Yan-Yuan Bao, Chuan-Xi Zhang
The planthoppers are piercing-sucking pests that continuously inject saliva into host plants using specialized stylets. However, knowledge on the constituent and function of planthopper saliva proteins was still limited. In this study, the transcriptomic and proteomic approach were adopted to characterize the composition of salivary glands and their secreted saliva in three planthoppers, respectively. Gene repertoires of salivary glands in brown planthopper (Nilaparvata lugens, BPH), white-backed planthopper (Sogatella furcifera, WBPH) and small brown planthopper (Laodelphax striatellus, SBPH) were very similar, which actively involved in protein synthesis and energy metabolism...
November 3, 2017: Journal of Proteomics
Pollyanna Pereira Santos, Patricia Dias Games, Dihego Oliveira Azevedo, Edvaldo Barros, Leandro Licursi de Oliveira, Humberto Josué de Oliveira Ramos, Maria Cristina Baracat-Pereira, José Eduardo Serrão
The ants use their venom for predation, defense, and communication. The venom of these insects is rich in peptides and proteins, and compared with other animal venoms, ant venoms remain poorly explored. The objective of this study was to evaluate the protein content of the venom in the Ponerinae ant Pachycondyla striata. Venom samples were collected by manual gland reservoir dissection, and samples were submitted to two-dimensional gel electrophoresis and separation by ion-exchange and reverse-phase high-performance liquid chromatography followed by mass spectrometry using tanden matrix-assisted laser desorption/ionization with time-of-flight (MALDI-TOF/TOF) mass spectrometry and electrospray ionization-quadrupole with time-of-flight (ESI-Q/TOF) mass spectrometry for obtaining amino acid sequence...
November 2017: Archives of Insect Biochemistry and Physiology
Tiantao Zhang, Brad S Coates, Yueqin Wang, Yidong Wang, Shuxiong Bai, Zhenying Wang, Kanglai He
The Asian corn borer (ACB), Ostrinia furnacalis (Lepidoptera: Crambidae), is a highly destructive pest of cultivated maize throughout East Asia. Bacillus thuringiensis (Bt) crystalline protein (Cry) toxins cause mortality by a mechanism involving pore formation or signal transduction following toxin binding to receptors along the midgut lumen of susceptible insects, but this mechanism and mutations therein that lead to resistance are not fully understood. In the current study, quantitative comparisons were made among midgut expressed transcripts from O...
2017: International Journal of Biological Sciences
Man Zhao, Xiangdong Yuan, Jizhen Wei, Wanna Zhang, Bingjie Wang, Myint Myint Khaing, Gemei Liang
A pyramid strategy combining the Cry1A and Cry2A toxins in Bt crops has been widely used throughout the world to delay pest adaption to transgenic crops and broaden the insecticidal spectrum. Midgut membrane-bound cadherin (CAD), aminopeptidase-N (APN) and alkaline phosphatase (ALP) are important for Cry1A toxicity in some lepidopteran larvae, but the proteins that bind Cry2A in the midgut of target insects and their role in the Cry2A mechanism of action are still unclear. In this study, we found that heterologously expressed CAD, APN4 and ALP2 peptides from the midgut of Helicoverpa armigera could bind to the Cry2Aa toxin with a high affinity...
May 10, 2017: Scientific Reports
Lin Qiu, Jinxing Fan, Boyao Zhang, Lang Liu, Xiaoping Wang, Chaoliang Lei, Yongjun Lin, Weihua Ma
Transgenic rice expressing Bacillus thuringiensis (Bt) Cry toxins are resistant to lepidopteran pests, such as Chilo suppressalis, a major insect pest of rice in Asia. Understanding how these toxins interact with their hosts is crucial to understanding their insecticidal action. In this study, knockdown of two aminopeptidase N genes (APN1 and APN2) by RNA interference resulted in decreased susceptibility of C. suppressalis larvae to the Bt rice varieties TT51 (Cry1Ab and Cry1Ac fusion genes) and T1C-19 (Cry1Ca), but not T2A-1 (Cry2Aa)...
May 2017: Journal of Invertebrate Pathology
Leivi Portugal, Carlos Muñóz-Garay, Diana L Martínez de Castro, Mario Soberón, Alejandra Bravo
Bacillus thuringiensis (Bt) bacteria produce Cry toxins that are able to kill insect pests. Different models explaining the mode of action of these toxins have been proposed. The pore formation model proposes that the toxin creates pores in the membrane of the larval midgut cells after interaction with different receptors such as cadherin, aminopeptidase N and alkaline phosphatase and that this pore formation activity is responsible for the toxicity of these proteins. The alternative model proposes that interaction with cadherin receptor triggers an intracellular cascade response involving protein G, adenylate cyclase (AC) and protein kinase A (PKA)...
January 2017: Insect Biochemistry and Molecular Biology
X Y Wang, L X Du, C X Liu, L Gong, L Z Han, Y F Peng
The striped stem borer, Chilo suppressalis, is a major target pest of transgenic rice expressing the Cry1Ab protein from the bacterium Bacillus thuringiensis (Bt) in China. Evolution of resistance in this pest is a major threat to the durability of Bt rice. Since Bt exerts its activity through binding to specific receptors in the midgut of target insects, identification of functional Cry1Ab receptors in the midgut of C. suppressalis larvae is crucial to evaluate potential resistance mechanisms and develop effective strategies for delaying insect resistance...
February 2017: Journal of Invertebrate Pathology
W Wei, G Wei, Z Dan, Y Xiaoping, Z Yakun
Several receptor proteins of Cry toxin have been previously identified, including cadherin-like, aminopeptidase N, and alkaline phosphatase. In the present work, a novel binding protein, V-ATPase subunit A (HpVAA), was identified in Holotricia parallela larvae and characterized. We performed reverse transcription-polymerase chain reaction and rapid amplification of cDNA ends technology to obtain the cDNA of the full-length hpvaa. Sequencing analysis showed that the open reading frame of hpvaa (GenBank accession No...
September 2, 2016: Genetics and Molecular Research: GMR
Mingxing Feng, Zhenyu He, Yuanyuan Wang, Xiufang Yan, Jiwen Zhang, Zhaonong Hu, Wenjun Wu
Periplocosides, which are insecticidal compounds isolated from the root bark of Periploca sepium Bunge, can affect the digestive system of insects. However, the mechanism though which periplocosides induces a series of symptoms remains unknown. In this study, affinity chromatography was conducted by coupling periplocoside E-semi-succinic acid ester with epoxy amino hexyl (EAH) sepharose 4B. Sodium dodecyl sulfonate-polyacrylamide gelelectrophoresis (SDS-PAGE) was performed to analyze the fraction eluted by periplocoside E...
May 4, 2016: Toxins
Vijaya Sudhakara Rao Kola, P Renuka, Ayyagari Phani Padmakumari, Satendra K Mangrauthia, Sena M Balachandran, V Ravindra Babu, Maganti S Madhav
RNAi is a powerful tool to target the insect genes involved in host-pest interactions. Key insect genes are the choice for silencing to achieve pest derived resistance where resistance genes are not available in gene pool of host plant. In this study, an attempt was made to determine the effect of dsRNA designed from two genes Cytochrome P450 derivative (CYP6) and Aminopeptidase N (APN) of rice yellow stem borer (YSB) on growth and development of insect. The bioassays involved injection of chemically synthesized 5' FAM labeled 21-nt dsRNA into rice cut stems and allowing the larvae to feed on these stems which resulted in increased mortality and observed growth and development changes in larval length and weight compared with its untreated control at 12-15 days after treatment...
2016: Frontiers in Physiology
Aftab Ahmad, Muhammad R Javed, Abdul Q Rao, Muhammad A U Khan, Ammara Ahad, Salah Ud Din, Ahmad A Shahid, Tayyab Husnain
Study and research of Bt (Bacillus thuringiensis) transgenic plants have opened new ways to combat insect pests. Over the decades, however, insect pests, especially the Lepidopteran, have developed tolerance against Bt delta-endotoxins. Such issues can be addressed through the development of novel toxins with greater toxicity and affinity against a broad range of insect receptors. In this computational study, functional domains of Bacillus thuringiensis crystal delta-endotoxin (Cry1Ac) insecticidal protein and vegetative insecticidal protein (Vip3Aa) have been fused to develop a broad-range Vip3Aa-Cry1Ac fusion protein...
2015: Frontiers in Plant Science
Michi Izumi Willcoxon, Jaclyn R Dennis, Sabina I Lau, Weiping Xie, You You, Song Leng, Ryan C Fong, Takashi Yamamoto
A high-throughput, in-vitro assay for Bacillus thuringiensis (Bt) insecticidal proteins designated as Cry was developed and evaluated for screening a large number of Cry protein variants produced by DNA shuffling. This automation-amenable assay exploits an insect cell line expressing a single receptor of Bt Cry proteins. The Cry toxin used to develop this assay is a variant of the Cry1Ab protein called IP1-88, which was produced previously by DNA shuffling. Cell mortality caused by the activated Bt Cry toxin was determined by chemical cell viability assay in 96/384-well microtiter plates utilizing CellTiter 96(®) obtained from Promega...
January 10, 2016: Journal of Biotechnology
Li-Na Xu, Ying-Hui Ling, Yue-Qin Wang, Zhen-Ying Wang, Ben-Jin Hu, Zi-Yan Zhou, Fei Hu, Kang-Lai He
The Asian corn borer (ACB), Ostrinia furnacalis (Guenée), can develop strong resistance to Cry1Ab, the most widely commercialized Cry toxin for Bt maize worldwide. It is essential to understand the mechanism of resistance for management of this species, but information on the post-transcriptional regulation of Bt resistance in this target insect is limited. In the present study, RNA was extracted from the ACB in various larval stages (1-5 instar) from Cry1Ab-sensitive (ACB-BtS) and -resistant (ACB-AbR) strains, each of which included two biological replicates...
2015: Scientific Reports
Shu-Lun Tang, Lucas B Linz, Bryony C Bonning, Nicola L B Pohl
Pea enation mosaic virus (PEMV)--a plant RNA virus transmitted exclusively by aphids--causes disease in multiple food crops. However, the aphid-virus interactions required for disease transmission are poorly understood. For virus transmission, PEMV binds to a heavily glycosylated receptor aminopeptidase N in the pea aphid gut and is transcytosed across the gut epithelium into the aphid body cavity prior to release in saliva as the aphid feeds. To investigate the role of glycans in PEMV-aphid interactions and explore the possibility of viral control through blocking a glycan interaction, we synthesized insect N-glycan terminal trimannosides by automated solution-phase synthesis...
November 6, 2015: Journal of Organic Chemistry
Lucas B Linz, Sijun Liu, Nanasaheb P Chougule, Bryony C Bonning
UNLABELLED: Insect-borne plant viruses cause significant agricultural losses and jeopardize sustainable global food production. Although blocking plant virus transmission would allow for crop protection, virus receptors in insect vectors are unknown. Here we identify membrane alanyl aminopeptidase N (APN) as a receptor for pea enation mosaic virus (PEMV) coat protein (CP) in the gut of the pea aphid, Acyrthosiphon pisum, using a far-Western blot method. Pulldown and immunofluorescence binding assays and surface plasmon resonance were used to confirm and characterize CP-APN interaction...
November 2015: Journal of Virology
Anastasia Mpakali, Emmanuel Saridakis, Karl Harlos, Yuguang Zhao, Athanasios Papakyriakou, Paraskevi Kokkala, Dimitris Georgiadis, Efstratios Stratikos
Aminopeptidases that generate antigenic peptides influence immunodominance and adaptive cytotoxic immune responses. The mechanisms that allow these enzymes to efficiently process a vast number of different long peptide substrates are poorly understood. In this work, we report the structure of insulin-regulated aminopeptidase, an enzyme that prepares antigenic epitopes for cross-presentation in dendritic cells, in complex with an antigenic peptide precursor analog. Insulin-regulated aminopeptidase is found in a semiclosed conformation with an extended internal cavity with limited access to the solvent...
September 15, 2015: Journal of Immunology: Official Journal of the American Association of Immunologists
Makoto Hattori, Setsuko Komatsu, Hiroaki Noda, Yukiko Matsumoto
The green rice leafhopper, Nephotettix cincticeps, is a vascular bundle feeder that discharges watery and gelling saliva during the feeding process. To understand the potential functions of saliva for successful and safe feeding on host plants, we analyzed the complexity of proteinaceous components in the watery saliva of N. cincticeps. Salivary proteins were collected from a sucrose diet that adult leafhoppers had fed on through a membrane of stretched parafilm. Protein concentrates were separated using SDS-PAGE under reducing and non-reducing conditions...
2015: PloS One
Fetch more papers »
Fetching more papers... Fetching...
Read by QxMD. Sign in or create an account to discover new knowledge that matter to you.
Remove bar
Read by QxMD icon Read

Search Tips

Use Boolean operators: AND/OR

diabetic AND foot
diabetes OR diabetic

Exclude a word using the 'minus' sign

Virchow -triad

Use Parentheses

water AND (cup OR glass)

Add an asterisk (*) at end of a word to include word stems

Neuro* will search for Neurology, Neuroscientist, Neurological, and so on

Use quotes to search for an exact phrase

"primary prevention of cancer"
(heart or cardiac or cardio*) AND arrest -"American Heart Association"