Read by QxMD icon Read

Chlorine toxicity in drinking water

Justin T Jasper, Yang Yang, Michael R Hoffmann
Electrochemical systems are an attractive option for onsite latrine wastewater treatment due to their high efficiency and small footprint. While concerns remain over formation of toxic byproducts during treatment, rigorous studies examining byproduct formation are lacking. Experiments treating authentic latrine wastewater over variable treatment times, current densities, chloride concentrations, and anode materials were conducted to characterize byproducts and identify conditions that minimize their formation...
June 20, 2017: Environmental Science & Technology
ShihChi Weng, Jer-Yen Yang, Yen-Hsing Li, Ernest R Blatchley
UV (Ultraviolet)-based treatment has been demonstrated to be effective for removal of some disinfection byproducts (DBPs) and to be beneficial for reduction of genotoxicity and cytotoxicity in chlorinated water. However, to a large extent, UV-induced effects on chemistry and toxicology have been treated as a black box, in the sense that little or no UV dose-dependent behavior has been reported. To address this issue, the effects of UV254 irradiation on 1,4-dibenzoquinone (BQ), 2,6-dichloro-1,4-benzoquinone (DCBQ), and chlorocreatinine (Cl-Cre) as model DBPs were examined, both in terms of photodegradation and cytotoxicity...
December 1, 2017: Science of the Total Environment
Jui-Wen Ma, Bin-Syuan Huang, Chu-Wei Hsu, Chun-Wei Peng, Ming-Long Cheng, Jung-Yie Kao, Tzong-Der Way, Hao-Chang Yin, Shan-Shue Wang
In this study, a chlorine dioxide solution (UC-1) composed of chlorine dioxide was produced using an electrolytic method and subsequently purified using a membrane. UC-1 was determined to contain 2000 ppm of gaseous chlorine dioxide in water. The efficacy and safety of UC-1 were evaluated. The antimicrobial activity was more than 98.2% reduction when UC-1 concentrations were 5 and 20 ppm for bacteria and fungi, respectively. The half maximal inhibitory concentrations (IC50) of H1N1, influenza virus B/TW/71718/04, and EV71 were 84...
March 22, 2017: International Journal of Environmental Research and Public Health
Xiong Xu, Donghong Wang, Chunmei Li, Hongru Feng, Zijian Wang
Carbazole in source water is a potential precursor for toxic chlorocarbazoles in drinking water when chlorine is used as a disinfection agent in drinking water treatment plants. However, the reactivity of carbazole and the specific structures and predominant analogues of chlorocarbazoles produced during aqueous chlorination remain unknown. In this study, the aqueous chlorination of carbazole was performed to characterize its reactivity and the chlorinated products. Chlorocarbazoles generated from carbazole were identified by a comprehensive two-dimensional gas chromatography-mass spectrometry method, and their molecular structures were predicted by the Fukui index of electrophilic attack, f(-1)(r)...
March 9, 2017: Environmental Pollution
Liyun Ma, Jian Li, Li Xu
Fenamic acids, one important type of non-steroidal anti-inflammatory drugs, are ubiquitous in environmental matrices. Thus it is of high significance to know the fate of them during chlorination disinfection considering their potential toxicity to the environment and humans. In the present study, the chlorination kinetics of three fenamic acids, i.e. mefenamic acid (MEF), tolfenamic acid (TOL) and clofenamic acid (CLO), were examined at different pHs, which followed second-order reaction under studied conditions...
May 2017: Chemosphere
Jingyi Jiang, Xiangru Zhang, Xiaohu Zhu, Yu Li
During chlorine disinfection of drinking water, chlorine may react with natural organic matter (NOM) and bromide ion in raw water to generate halogenated disinfection byproducts (DBPs). To mitigate adverse effects from DBP exposure, granular activated carbon (GAC) adsorption has been considered as one of the best available technologies for removing NOM (DBP precursor) in drinking water treatment. Recently, we have found that many aromatic halogenated DBPs form in chlorination, and they act as intermediate DBPs to decompose and form commonly known DBPs including trihalomethanes and haloacetic acids...
March 21, 2017: Environmental Science & Technology
Yang Pan, Ying Wang, Aimin Li, Bin Xu, Qiming Xian, Chendong Shuang, Peng Shi, Qing Zhou
Recently, 13 new polar phenolic chlorinated and brominated disinfection byproducts (Cl- and Br-DBPs) were identified and quantified in simulated chlorinated drinking water by adopting product ion scan, precursor ion scan, and multiple reaction monitoring (MRM) analyses using ultra performance liquid chromatography/electrospray ionization-triple quadrupole mass spectrometry (UPLC/ESI-tqMS). The 13 new DBPs have been drawing increasing concern not only because they possess significantly higher growth inhibition, developmental toxicity, and chronic cytotoxicity than commonly known aliphatic DBPs, but also because they act as intermediate DBPs that can decompose to form the U...
April 1, 2017: Water Research
Shimin Wu, Tarun Anumol, Jay Gandhi, Shane A Snyder
The addition of oxidants for disinfecting water can lead to the formation of potentially carcinogenic compounds referred to as disinfection byproducts (DBPs). Haloacetic acids (HAAs) are one of the most widely detected DBPs in US water utilities and some of them are regulated by the US Environmental Protection Agency (USEPA). The present study developed a method to analyze all the compounds in the USEPA method 557 (nine HAAs, bromate and dalapon) plus four potentially more toxic iodinated HAAs in water by coupling ion chromatography with tandem mass spectrometry (IC-MS/MS)...
March 3, 2017: Journal of Chromatography. A
Xin Wang, Haifeng Zhang, Yahe Zhang, Quan Shi, Juan Wang, Jianwei Yu, Min Yang
Natural organic matter (NOM) represents the major source of precursors for disinfection byproducts (DBPs), such as trihalomethanes (THMs) and haloacetic acids (HAAs), formed during disinfection of drinking water, but the molecular composition and reactivity of NOM remain not well understood. In this study, electrospray ionization coupled to Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR MS) was used to characterize the molecular composition of NOM of 20 source waters taken across China for the purpose of determining the major precursors of THMs and HAAs at molecular level...
February 21, 2017: Environmental Science & Technology
K Dec, A Łukomska, D Maciejewska, K Jakubczyk, I Baranowska-Bosiacka, D Chlubek, A Wąsik, I Gutowska
Fluorides occur naturally in the environment, the daily exposure of human organism to fluorine mainly depends on the intake of this element with drinking water and it is connected with the geographical region. In some countries, we can observe the endemic fluorosis-the damage of hard and soft tissues caused by the excessive intake of fluorine. Recent studies showed that fluorine is toxic to the central nervous system (CNS). There are several known mechanisms which lead to structural brain damage caused by the excessive intake of fluorine...
June 2017: Biological Trace Element Research
Chun-Wei Chiang, Ding-Quan Ng, Yi-Pin Lin, Pei-Jen Chen
Nanoscale lead dioxide (nPbO2(s)) is a corrosion product formed from the chlorination of lead-containing plumbing materials. This metal oxide nanoparticle (NP) plays a key role in determining lead pollution in drinking water and receiving water bodies. This study uses nPbO2(s) and medaka fish (Oryzias latipes) as surrogates to investigate the aqueous fate and toxicological risk of metal oxide NPs associated with water matrices. The larvae of medaka were treated with solutions containing nPbO2(s) or Pb(II)aq in different water matrices for 7-14 days to investigate the in vivo toxic effects of NPs...
October 4, 2016: Environmental Science & Technology
Waleed M Sweileh, Sa'ed H Zyoud, Samah W Al-Jabi, Ansam F Sawalha, Naser Y Shraim
BACKGROUND: Water - related diseases are worldwide health concern. Microbial contamination and contaminant products in water are a source of disease outbreaks and development of cumulative toxic effects. Ensuring safe water is one of the goals to be achieved at the global level. The aim of this study was to assess publications on drinking and recreational water from a health point of view to understand current problems and future research trends in this field. METHODS: Scopus, the largest scientific electronic database, was used to retrieve related articles and present the results as bibliometric tables and maps...
2016: Annals of Occupational and Environmental Medicine
Wei Li, Ruiqing Wu, Jinming Duan, Christopher P Saint, John van Leeuwen
Prechlorination is commonly used to minimize operational problems associated with biological growth as well as taste and odor control during drinking water treatment. However, prechlorination can also oxidise micropollutants into intermediate byproducts. This could impose profound effects on the safety of the finished water if the transformed byproducts are more toxic and less removable. This study investigated the effect of prechlorination on decomposition and subsequent removal of the four organophosphorus pesticides (OPPs): chlorpyrifos, diazinon, malathion and tolclofos-methyl using a simulated conventional water treatment process of powdered activated carbon assisted coagulation-sedimentation-filtration (PAC-CSF) and postchlorination...
November 15, 2016: Water Research
Chunmei Li, Donghong Wang, Na Li, Qian Luo, Xiong Xu, Zijian Wang
Improvements in extraction and detection technologies have increased our abilities to identify new disinfection by-products (DBPs) over the last 40 years. However, most previous studies combined DBP identification and measurement efforts with toxicology to address concerns on a few expected DBPs, making it difficult to better define the health risk from the individual DBPs. In this study, a nontargeted screening method involving comprehensive two-dimensional gas chromatography-quadrupole mass spectrometry (GC × GC-qMS) combined with OECD QSAR Toolbox Ver...
November 2016: Chemosphere
Tingting Gong, Yuxian Tao, Qiming Xian
Iodide is widely present in drinking water sources as well as wastewater effluents. Chlorination and chloramination are the most commonly used disinfection methods. During chlorination or chloramination of drinking water/wastewater effluents, iodide may be oxidized to hypoiodous acid, which may further react with organic matter to form iodinated disinfection byproducts (DBPs). Recently, several new polar iodinated DBPs have been identified in drinking water as well as chlorinated wastewater effluents, and they have drawn increasing concerns due to their high toxicity...
November 2016: Chemosphere
Deborah Liew, Kathryn L Linge, Cynthia A Joll
The presence of nitrogenous disinfection by-products (N-DBPs) in drinking water supplies is a public health concern, particularly since some N-DBPs have been reported to be more toxic than the regulated trihalomethanes and haloacetic acids. In this paper, a comprehensive evaluation of the presence of N-DBPs in 10 drinking water supply systems in Western Australia is presented. A suite of 28 N-DBPs, including N-nitrosamines, haloacetonitriles (HANs), haloacetamides (HAAms) and halonitromethanes (HNMs), were measured and evaluated for relationships with bulk parameters in the waters before disinfection...
September 2016: Environmental Monitoring and Assessment
Wei-Hsiang Chen, Chung-Ya Wang, Tsung-Hsien Huang
Nitrosamines are toxic and emerging disinfection byproducts. In this study, three drinking water treatment plants (DWTPs) in southern Taiwan treating the same source water in Gaoping River with comparable technologies were selected. The objective was to evaluate the formation and fates of six nitrosamines and their formation potentials (FPs) from a surface water source to drinking water. Albeit decreased further downstream in the river, four nitrosamine-FPs were observed in the source water due to anthropogenic pollution in the upstream areas...
October 2016: Chemosphere
Jiajia Fan, La Rao, Yi-Ting Chiu, Tsair-Fuh Lin
The occurrence of toxic cyanobacteria in drinking water sources is problematic for water authorities as they can impair drinking water quality. Chlorine as a commonly used oxidant in water treatment plants has shown the potential to lyse cyanobacterial cells, resulting in the release of secondary metabolites which are hard to be removed during conventional water treatment processes. The majority of cyanobacterial species such as Microcystis, often occur in colonial forms under natural conditions. However, previous studies have mainly focused on the influence of chlorination on individual cyanobacterial cells due to technique limitations...
October 1, 2016: Water Research
Elena Kuisma, C Fredrik Hansson, Th Benjamin Lindberg, Christoffer A Gillberg, Sebastian Idh, Elsebeth Schröder
Chlorinated hydrocarbon compounds are of environmental concerns, since they are toxic to humans and other mammals, and are widespread, and exposure is hard to avoid. Understanding and improving methods to reduce the amount of the substances are important. We present an atomic-scale calculational study of the adsorption of chlorine-based substance chloroform (CHCl3) on graphene oxide, as a step in estimating the capacity of graphene oxide for filtering out such substances, e.g., from drinking water. The calculations are based on density functional theory, and the recently developed consistent-exchange functional for the van der Waals density-functional method is employed...
May 14, 2016: Journal of Chemical Physics
Emma Sawade, Rolando Fabris, Andrew Humpage, Mary Drikas
Research is increasingly indicating the potential chronic health effects of brominated disinfection by-products (DBPs). This is likely to increase with elevated bromide concentrations resulting from the impacts of climate change, projected to include extended periods of drought and the sudden onset of water quality changes. This will demand more rigorous monitoring throughout distribution systems and improved water quality management at water treatment plants (WTPs). In this work the impact of increased bromide concentration on formation of DBPs following conventional treatment and chlorination was assessed for two water sources...
April 2016: Journal of Water and Health
Fetch more papers »
Fetching more papers... Fetching...
Read by QxMD. Sign in or create an account to discover new knowledge that matter to you.
Remove bar
Read by QxMD icon Read

Search Tips

Use Boolean operators: AND/OR

diabetic AND foot
diabetes OR diabetic

Exclude a word using the 'minus' sign

Virchow -triad

Use Parentheses

water AND (cup OR glass)

Add an asterisk (*) at end of a word to include word stems

Neuro* will search for Neurology, Neuroscientist, Neurological, and so on

Use quotes to search for an exact phrase

"primary prevention of cancer"
(heart or cardiac or cardio*) AND arrest -"American Heart Association"