Read by QxMD icon Read

Chlorine toxicity in drinking water

Guang Huang, Ping Jiang, Lindsay K Jmaiff Blackstock, Dayong Tian, Xing-Fang Li
Iodinated disinfection byproducts (I-DBPs) are highly toxic, but few precursors of I-DBPs have been investigated. Tyrosine containing biomolecules are ubiquitous in surface water. Here we investigated the formation of I-DBPs from the chloramination of seven tyrosyl dipeptides (i.e., tyrosylglycine, tyrosylalanine, tyrosylvaline, tyrosylhistidine, tyrosylglutamine, tyrosylglutamic acid, and tyrosylphenylalanine) in the presence of potassium iodide. High resolution mass spectrometry (HRMS) and tandem mass spectrometry (MS/MS) analyses of the benchtop reaction solutions found all seven precursors formed both I- and Cl- substituted tyrosyl dipeptide products...
February 28, 2018: Environmental Science & Technology
Runmiao Xue, Ariel Donovan, Haiting Zhang, Yinfa Ma, Craig Adams, John Yang, Bin Hua, Enos Inniss, Todd Eichholz, Honglan Shi
When adding sufficient chlorine to achieve breakpoint chlorination to source water containing high concentration of ammonia during drinking water treatment, high concentrations of disinfection by-products (DBPs) may form. If N-nitrosamine precursors are present, highly toxic N-nitrosamines, primarily N-nitrosodimethylamine (NDMA), may also form. Removing their precursors before disinfection should be a more effective way to minimize these DBPs formation. In this study, zeolites and activated carbon were examined for ammonia and N-nitrosamine precursor removal when incorporated into drinking water treatment processes...
February 2018: Journal of Environmental Sciences (China)
Ezdihar A Hassoun, Xiaoqun Zeng
The brominated and mixed bromo-chloro-haloacetates, such as dibromoacetate (DBA), bromochloroacetate (BCA), and bromodichloroacetate (BDCA), are by-products of water chlorination and are found at lower levels than the fully chlorinated acetates in the drinking water. The toxicities of the compounds were assessed in J774A.1 cells and were found to induce concentration-dependent increases in cell death and superoxide anion and protein carbonyl compounds production. Compared to the previously tested concentrations of dichoroacetate (DCA) and trichloroacetate (TCA) in the same cell line, the tested haloacetates induced similar effects on cellular viability and superoxide anion production but at DBA and BCA concentrations that were approximately 40-160 times lower than those of DCA and TCA, and at BDCA concentrations that were 4-16 times lower than those of DCA and TCA...
February 19, 2018: Journal of Biochemical and Molecular Toxicology
Xing-Fang Li, William A Mitch
While drinking water disinfection has effectively prevented waterborne diseases, an unintended consequence is the generation of disinfection byproducts (DBPs). Epidemiological studies have consistently observed an association between consumption of chlorinated drinking water with an increased risk of bladder cancer. Out of the >600 DBPs identified, regulations focus on a few classes, such as trihalomethanes (THMs), whose concentrations were hypothesized to correlate with the DBPs driving the toxicity of disinfected waters...
February 20, 2018: Environmental Science & Technology
Surbhi Tak, Arun Kumar
Apart from numerous other well-known drawbacks of chlorination, viz. on-site operational hazards and residual chlorine toxicity, trihalomethane (THM) formation is the major factor that came into limelight in the last 40 years, primarily in drinking water treatment industry. Treated effluent from wastewater treatment plants is also chlorinated and then discharged, indirectly coming in human contact, so there is need to consider THM as a potable as well as wastewater parameter. In this study, THMs were identified in seven sewage treatment plants (STPs) in North India...
December 2017: Environmental Science and Pollution Research International
Dmitry S Kosyakov, Nikolay V Ul'yanovskii, Mark S Popov, Tomas B Latkin, Albert T Lebedev
An array of similar halogenated nitrogen-containing compounds with elemental composition CnH2nNO2X, CnH2n-2NO2X and CnH2n-1NOX2 (X = Cl, Br; n = 16, 18, 22) was detected in drinking water with high performance liquid chromatography - high resolution mass spectrometry (HPLC-HRMS) method. Compounds of this type were never mentioned among disinfection by-products. Tandem mass spectrometry allowed referring them to halohydrines or dihalogenated fatty amides, the products of conjugated electrophilic addition of halogens to the double bonds of unsaturated fatty amides...
October 6, 2017: Water Research
Runmiao Xue, Honglan Shi, Yinfa Ma, John Yang, Bin Hua, Enos C Inniss, Craig D Adams, Todd Eichholz
Free chlorine is a commonly used disinfectant in drinking water treatment. However, disinfection by-products (DBPs) are formed during water disinfection. Haloacetic acids (HAAs) and trihalomethanes (THMs) are two major groups of DBPs. Iodo-HAAs and iodo-THMs (I-HAAs and I-THMs) are formed during the disinfection of the water containing high levels of iodide and are much more toxic than their chlorinated and brominated analogs. Peracetic acid (PAA) is a strong antimicrobial disinfectant that is expected to reduce the formation of HAAs and THMs during disinfection...
September 15, 2017: Chemosphere
Laura Rosenblum, Alan Zaffiro, William A Adams, Steven C Wendelken
Microcystins are toxic peptides that can be produced by cyanobacteria in harmful algal blooms (HABs). Various analytical techniques have been developed to quantify microcystins in drinking water, including liquid chromatography tandem mass spectrometry (LC/MS/MS), enzyme linked immunosorbent assay (ELISA), and oxidative cleavage to produce 2-methyl-3-methoxy-4-phenylbutyric acid (MMPB) with detection by LC/MS/MS, the "MMPB method". Both the ELISA and MMPB methods quantify microcystins by detecting a portion of the molecule common to most microcystins...
November 2017: Toxicon: Official Journal of the International Society on Toxinology
Wenbo Jiang, Bai Li, Yingying Chen, Shuying Gao
Dibromoacetic acid (DBA) exsits in drinking water as a by-product of disinfection as a result of chlorination or ozonation processes. Hippocampus and pre-frontal cortex are the key structures in memory formation and weanling babies are more sensitive to environmental toxicant than adults, so this study was conducted to evaluate the potential neurotoxicity effects of DBA exposure when administered intragastrically for 4 weeks to weanling Sprague-Dawley rats, at concentration of 0, 20, 50, 125 mg/kg via the neurobehavioral and neurochemical effects...
December 2017: Metabolic Brain Disease
Jiarui Han, Xiangru Zhang, Jiaqi Liu, Xiaohu Zhu, Tingting Gong
Chlorine dioxide (ClO2) is a widely used alternative disinfectant due to its high biocidal efficiency and low-level formation of trihalomethanes and haloacetic acids. A major portion of total organic halogen (TOX), a collective parameter for all halogenated DBPs, formed in ClO2-treated drinking water is still unknown. A commonly used pretreatment method for analyzing halogenated DBPs in drinking water is one-time liquid-liquid extraction (LLE), which may lead to a substantial loss of DBPs prior to analysis...
August 2017: Journal of Environmental Sciences (China)
Ye Du, Xiao-Tong Lv, Qian-Yuan Wu, Da-Yin Zhang, Yu-Ting Zhou, Lu Peng, Hong-Ying Hu
Chlorination is essential to the safety of reclaimed water; however, this process leads to concern regarding the formation of disinfection byproducts (DBPs) and toxicity. This study reviewed the formation and control strategies for DBPs and toxicity in reclaimed water during chlorination. Both regulated and emerging DBPs have been frequently detected in reclaimed water during chlorination at a higher level than those in drinking water, indicating they pose a greater risk to humans. Luminescent bacteria and Daphnia magna acute toxicity, anti-estrogenic activity and cytotoxicity generally increased after chlorination because of the formation of DBPs...
August 2017: Journal of Environmental Sciences (China)
Yimeng Zhang, Wenhai Chu, Dechang Yao, Daqiang Yin
The comprehensive control efficiency for the formation potentials (FPs) of a range of regulated and unregulated halogenated disinfection by-products (DBPs) (including carbonaceous DBPs (C-DBPs), nitrogenous DBPs (N-DBPs), and iodinated DBPs (I-DBPs)) with the multiple drinking water treatment processes, including pre-ozonation, conventional treatment (coagulation-sedimentation, pre-sand filtration), ozone-biological activated carbon (O3-BAC) advanced treatment, and post-sand filtration, was investigated. The potential toxic risks of DBPs by combing their FPs and toxicity values were also evaluated...
August 2017: Journal of Environmental Sciences (China)
Shahid Parvez, Glenn E Rice, Linda K Teuschler, Jane Ellen Simmons, Thomas F Speth, Susan D Richardson, Richard J Miltner, E Sidney Hunter, Jonathan G Pressman, Lillian F Strader, Gary R Klinefelter, Jerome M Goldman, Michael G Narotsky
A method based on regression modeling was developed to discern the contribution of component chemicals to the toxicity of highly complex, environmentally realistic mixtures of disinfection byproducts (DBPs). Chemical disinfection of drinking water forms DBP mixtures. Because of concerns about possible reproductive and developmental toxicity, a whole mixture (WM) of DBPs produced by chlorination of a water concentrate was administered as drinking water to Sprague-Dawley (S-D) rats in a multigenerational study...
August 2017: Journal of Environmental Sciences (China)
David Hanigan, Lisa Truong, Michael Simonich, Robert Tanguay, Paul Westerhoff
Disinfection to protect human health occurs at drinking water and wastewater facilities through application of non-selective oxidants including chlorine. Oxidants also transform organic material and form disinfection by-products (DBPs), many of which are halogenated and cyto- and genotoxic. Only a handful of assays have been used to compare DBP toxicity, and researchers are unsure which DBP(s) drive the increased cancer risk associated with drinking chlorinated water. The most extensive data set employs an in vitro model cell, Chinese hamster ovary cells...
August 2017: Journal of Environmental Sciences (China)
Zuo Tong How, Ina Kristiana, Francesco Busetti, Kathryn L Linge, Cynthia A Joll
This paper is a critical review of current knowledge of organic chloramines in water systems, including their formation, stability, toxicity, analytical methods for detection, and their impact on drinking water treatment and quality. The term organic chloramines may refer to any halogenated organic compounds measured as part of combined chlorine (the difference between the measured free and total chlorine concentrations), and may include N-chloramines, N-chloramino acids, N-chloraldimines and N-chloramides...
August 2017: Journal of Environmental Sciences (China)
Chelsea Kolb, Royce A Francis, Jeanne M VanBriesen
Natural and anthropogenic factors can alter bromide concentrations in drinking water sources. Increasing source water bromide concentrations increases the formation and alters the speciation of disinfection byproducts (DBPs) formed during drinking water treatment. Brominated DBPs are more toxic than their chlorinated analogs, and thus have a greater impact on human health. However, DBPs are regulated based on the mass sum of DBPs within a given class (e.g., trihalomethanes and haloacetic acids), not based on species-specific risk or extent of bromine incorporation...
August 2017: Journal of Environmental Sciences (China)
Rhys A A Carter, Cynthia A Joll
Disinfection of water for human use is essential to protect against microbial disease; however, disinfection also leads to formation of disinfection by-products (DBPs), some of which are of health concern. From a chemical perspective, swimming pools are a complex matrix, with continual addition of a wide range of natural and anthropogenic chemicals via filling waters, disinfectant addition, pharmaceuticals and personal care products and human body excretions. Natural organic matter, trace amounts of DBPs and chlorine or chloramines may be introduced by the filling water, which is commonly disinfected distributed drinking water...
August 2017: Journal of Environmental Sciences (China)
Clara H Jeong, Edward J Machek, Morteza Shakeri, Stephen E Duirk, Thomas A Ternes, Susan D Richardson, Elizabeth D Wagner, Michael J Plewa
The presence of iodinated X-ray contrast media (ICM) in source waters is of high concern to public health because of their potential to generate highly toxic disinfection by-products (DBPs). The objective of this study was to determine the impact of ICM in source waters and the type of disinfectant on the overall toxicity of DBP mixtures and to determine which ICM and reaction conditions give rise to toxic by-products. Source waters collected from Akron, OH were treated with five different ICMs, including iopamidol, iopromide, iohexol, diatrizoate and iomeprol, with or without chlorine or chloramine disinfection...
August 2017: Journal of Environmental Sciences (China)
Cristina Postigo, Susan D Richardson, Damia Barceló
Iodine containing disinfection by-products (I-DBPs) and haloacetaldehydes (HALs) are emerging disinfection by-product (DBP) classes of concern. The former due to its increased potential toxicity and the latter because it was found to be the third most relevant DBP class in mass in a U.S. nationwide drinking water study. These DBP classes have been scarcely investigated, and this work was performed to further explore their formation in drinking water under chlorination and chloramination scenarios. In order to do this, iodo-trihalomethanes (I-THMs), iodo-haloacetic acids (I-HAAs) and selected HALs (mono-HALs and di-HALs species, including iodoacetaldehyde) were investigated in DBP mixtures generated after chlorination and chloramination of different water matrices containing different levels of bromide and iodide in laboratory controlled reactions...
August 2017: Journal of Environmental Sciences (China)
Ina Kristiana, Deborah Liew, Rita K Henderson, Cynthia A Joll, Kathryn L Linge
We studied the formation of four nitrogenous DBPs (N-DBPs) classes (haloacetonitriles, halonitromethanes, haloacetamides, and N-nitrosamines), as well as trihalomethanes and total organic halogen (TOX), after chlorination or chloramination of source waters. We also evaluated the relative and additive toxicity of N-DBPs and water treatment options for minimisation of N-DBPs. The formation of halonitromethanes, haloacetamides, and N-nitrosamines was higher after chloramination and positively correlated with dissolved organic nitrogen or total nitrogen...
August 2017: Journal of Environmental Sciences (China)
Fetch more papers »
Fetching more papers... Fetching...
Read by QxMD. Sign in or create an account to discover new knowledge that matter to you.
Remove bar
Read by QxMD icon Read

Search Tips

Use Boolean operators: AND/OR

diabetic AND foot
diabetes OR diabetic

Exclude a word using the 'minus' sign

Virchow -triad

Use Parentheses

water AND (cup OR glass)

Add an asterisk (*) at end of a word to include word stems

Neuro* will search for Neurology, Neuroscientist, Neurological, and so on

Use quotes to search for an exact phrase

"primary prevention of cancer"
(heart or cardiac or cardio*) AND arrest -"American Heart Association"