keyword
MENU ▼
Read by QxMD icon Read
search

chondrogenesis

keyword
https://www.readbyqxmd.com/read/28629066/glucosamine-modified-polyethylene-glycol-hydrogel-mediated-chondrogenic-differentiation-of-human-mesenchymal-stem-cells
#1
Hang Yao, Jingchen Xue, Qunfang Wang, Renjian Xie, Weichang Li, Sa Liu, Jinglei Cai, Dajiang Qin, Dong-An Wang, Li Ren
Glucosamine (GA) is an important cartilage matrix precursor for the glycosaminoglycan biochemical synthesis, and has positive effects on cartilage regeneration, particularly in osteoarthritis therapy. However, it has not been used as a bioactive group in scaffolds for cartilage repair widely. In this study, we synthesized modified polyethylene glycol (PEG) hydrogel with glucosamine and then encapsulated human bone mesenchymal stem cells (hBMSCs) in the hydrogel to induce the differentiation of hBMSCs into chondrocytes in three-dimensional culture...
October 1, 2017: Materials Science & Engineering. C, Materials for Biological Applications
https://www.readbyqxmd.com/read/28625871/mir-27-regulates-chondrogenesis-by-suppressing-focal-adhesion-kinase-during-pharyngeal-arch-development
#2
Nergis Kara, Chunyao Wei, Alexander C Commanday, James G Patton
Cranial neural crest cells are a multipotent cell population that generate all the elements of the pharyngeal cartilage with differentiation into chondrocytes tightly regulated by temporal intracellular and extracellular cues. Here, we demonstrate a novel role for miR-27, a highly enriched microRNA in the pharyngeal arches, as a positive regulator of chondrogenesis. Knock down of miR-27 led to nearly complete loss of pharyngeal cartilage by attenuating proliferation and blocking differentiation of pre-chondrogenic cells...
June 15, 2017: Developmental Biology
https://www.readbyqxmd.com/read/28618041/effect-of-various-ratios-of-co-cultured-atdc5-cells-and-chondrocytes-on-the-expression-of-cartilaginous-phenotype-in-microcavitary-alginate-hydrogel
#3
Yongchang Yao, Yuyang Huang, Dongyang Qian, Shujiang Zhang, Yi Chen, Bo Bai
The present study introduced a direct co-culture of mouse ATDC5 cells and primary porcine chondrocytes into a microcavitary hydrogel, which possessed advantages in promoting the growth of chondrocytes and retaining the phenotype. These two types of cells were encapsulated with gelatin microspheres in alginate hydrogels in either of the three ratios (3:1, 1:1, or 1:3 of ATDC5 cells to chondrocytes) and cultured in chondrogenic medium for 28 days. Simultaneously, the single encapsulation of ATDC5 cells or chondrocytes was set as a control...
June 15, 2017: Journal of Cellular Biochemistry
https://www.readbyqxmd.com/read/28616703/preparation-of-a-biphase-composite-scaffold-and-its-application-in-tissue-engineering-for-femoral-osteochondral-defects-in-rabbits
#4
Shi-Qiang Ruan, Ling Yan, Jiang Deng, Wen-Liang Huang, Dian-Ming Jiang
PURPOSE: Three-dimensional bioactive scaffolds are useful tools for stem cell implant in tissue-engineering. For chondral and subchondral repair, the chondroinductive and osteoinductive property of a scaffold is a major challenge. The scaffolds that aim to osteogenic differentiation have been well studied. However, cartilage cells can hardly be induced for osteogenesis, and monophase scaffolds cannot ideally repair both cartilage and subchondral defects at the same time. METHODS: We developed a novel biphase composite scaffold and observe its application osteochondral defects...
June 14, 2017: International Orthopaedics
https://www.readbyqxmd.com/read/28612031/microrna-29b-contributes-to-collagens-imbalance-in-human-osteoarthritic-and-dedifferentiated-articular-chondrocytes
#5
David Moulin, Véronique Salone, Meriem Koufany, Thomas Clément, Isabelle Behm-Ansmant, Christiane Branlant, Bruno Charpentier, Jean-Yves Jouzeau
OBJECTIVE: Decreased expression of collagen type II in favour of collagen type I or X is one hallmark of chondrocyte phenotype changes in osteoarthritic (OA) cartilage. MicroRNA- (miR-) 29b was previously shown to target collagens in several tissues. We studied whether it could contribute to collagen imbalance in chondrocytes with an impaired phenotype. METHODS: After preliminary microarrays screening, miR-29b levels were measured by RT- quantitative PCR in in vitro models of chondrocyte phenotype changes (IL-1β challenge or serial subculturing) and in chondrocytes from OA and non-OA patients...
2017: BioMed Research International
https://www.readbyqxmd.com/read/28611369/enhanced-chondrogenesis-of-bone-marrow-derived-stem-cells-by-using-a-combinatory-cell-therapy-strategy-with-bmp-2-tgf-%C3%AE-1-hypoxia-and-col1a1-htra1-sirnas
#6
Florence Legendre, David Ollitrault, Tangni Gomez-Leduc, Mouloud Bouyoucef, Magalie Hervieu, Nicolas Gruchy, Frédéric Mallein-Gerin, Sylvain Leclercq, Magali Demoor, Philippe Galéra
Mesenchymal stem cells (MSCs) hold promise for cartilage engineering. Here, we aimed to determine the best culture conditions to induce chondrogenesis of MSCs isolated from bone marrow (BM) of aged osteoarthritis (OA) patients. We showed that these BM-MSCs proliferate slowly, are not uniformly positive for stem cell markers, and maintain their multilineage potential throughout multiple passages. The chondrogenic lineage of BM-MSCs was induced in collagen scaffolds, under normoxia or hypoxia, by BMP-2 and/or TGF-β1...
June 13, 2017: Scientific Reports
https://www.readbyqxmd.com/read/28611002/chondrogenesis-of-human-bone-marrow-mesenchymal-stem-cells-in-3-dimensional-photocrosslinked-hydrogel-constructs-effect-of-cell-seeding-density-and-material-stiffness
#7
Aaron X Sun, Hang Lin, Madalyn R Fritch, He Shen, Pete G Alexander, Michael DeHart, Rocky S Tuan
Three-dimensional hydrogel constructs incorporated with live stem cells that support chondrogenic differentiation and maintenance offer a promising regenerative route towards addressing the limited self-repair capabilities of articular cartilage. In particular, hydrogel scaffolds that augment chondrogenesis and recapitulate the native physical properties of cartilage, such as compressive strength, can potentially be applied in point-of-care procedures. We report here the synthesis of two new materials, [poly-l-lactic acid/polyethylene glycol/poly-l-lactic acid] (PLLA-PEG 1000) and [poly-d,l-lactic acid/polyethylene glycol/poly-d,l-lactic acid] (PDLLA-PEG 1000), that are biodegradable, biocompatible (>80% viability post fabrication), and possess high, physiologically relevant mechanical strength (∼1500 to 1800kPa)...
June 10, 2017: Acta Biomaterialia
https://www.readbyqxmd.com/read/28607813/differential-involvement-of-wnt-signaling-in-bmp-regulation-of-cancellous-versus-periosteal-bone-growth
#8
Guangxu He, Yu Shi, Joohyun Lim, Teresita Bellido, Jiangdong Ni, Fanxin Long
Bone morphogenetic proteins (Bmp) are well-known to induce bone formation following chondrogenesis, but the direct role of Bmp signaling in the osteoblast lineage is not completely understood. We have recently shown that deletion of the receptor Bmpr1a in the osteoblast lineage with Dmp1-Cre reduces osteoblast activity in general but stimulates proliferation of preosteoblasts specifically in the cancellous bone region, resulting in diminished periosteal bone growth juxtaposed with excessive cancellous bone formation...
2017: Bone Research
https://www.readbyqxmd.com/read/28607559/bone-marrow-aspirate-concentrate-enhanced-marrow-stimulation-of-chondral-defects
#9
REVIEW
Henning Madry, Liang Gao, Hermann Eichler, Patrick Orth, Magali Cucchiarini
Mesenchymal stem cells (MSCs) from bone marrow play a critical role in osteochondral repair. A bone marrow clot forms within the cartilage defect either as a result of marrow stimulation or during the course of the spontaneous repair of osteochondral defects. Mobilized pluripotent MSCs from the subchondral bone migrate into the defect filled with the clot, differentiate into chondrocytes and osteoblasts, and form a repair tissue over time. The additional application of a bone marrow aspirate (BMA) to the procedure of marrow stimulation is thought to enhance cartilage repair as it may provide both an additional cell population capable of chondrogenesis and a source of growth factors stimulating cartilage repair...
2017: Stem Cells International
https://www.readbyqxmd.com/read/28602122/transcriptome-wide-analyses-of-human-neonatal-articular-cartilage-and-human-mesenchymal-stem-cells-hmscs-derived-cartilage-provide-a-new-molecular-target-for-evaluating-engineered-cartilage
#10
Rodrigo Alfonso Somoza, Diego Correa, Ivan Labat, Hal Sternberg, Megan E Forrest, Ahmad M Khalil, Michael D West, Paul J Tesar, Arnold I Caplan
Cellular differentiation comprises a progressive, multistep program that drives cells to fabricate a tissue with specific and site distinctive structural and functional properties. Cartilage constitutes one of the potential differentiation lineages that Mesenchymal Stem Cells (MSCs) can follow under the guidance of specific bioactive agents. Single agents such as TGF-β and BMP2 in unchanging culture conditions have been historically used to induce in vitro chondrogenic differentiation of MSCs. Despite the expression of traditional chondrogenic biomarkers such as type II collagen and aggrecan, the resulting tissue represents a transient cartilage rather than an in vivo articular cartilage (AC), differing significantly in structure, chemical composition, cellular phenotypes, and mechanical properties...
June 10, 2017: Tissue Engineering. Part A
https://www.readbyqxmd.com/read/28597211/characterization-and-use-of-equine-bone-marrow-mesenchymal-stem-cells-in-equine-cartilage-engineering-study-of-their-hyaline-cartilage-forming-potential-when-cultured-under-hypoxia-within-a-biomaterial-in-the-presence-of-bmp-2-and-tgf-%C3%A3-1
#11
Thomas Branly, Lélia Bertoni, Romain Contentin, Rodolphe Rakic, Tangni Gomez-Leduc, Mélanie Desancé, Magalie Hervieu, Florence Legendre, Sandrine Jacquet, Fabrice Audigié, Jean-Marie Denoix, Magali Demoor, Philippe Galéra
Articular cartilage presents a poor capacity for self-repair. Its structure-function are frequently disrupted or damaged upon physical trauma or osteoarthritis in humans. Similar musculoskeletal disorders also affect horses and are the leading cause of poor performance or early retirement of sport- and racehorses. To develop a therapeutic solution for horses, we tested the autologous chondrocyte implantation technique developed on human bone marrow (BM) mesenchymal stem cells (MSCs) on horse BM-MSCs. This technique involves BM-MSC chondrogenesis using a combinatory approach based on the association of 3D-culture in collagen sponges, under hypoxia in the presence of chondrogenic factors (BMP-2 + TGF-β1) and siRNA to knockdown collagen I and HtrA1...
June 9, 2017: Stem Cell Reviews
https://www.readbyqxmd.com/read/28589998/magnetic-field-application-or-mechanical-stimulation-via-magnetic-microparticles-does-not-enhance-chondrogenesis-in-mesenchymal-stem-cell-sheets
#12
A D Dikina, B P Lai, M Cao, M Zborowski, E Alsberg
Using a novel magnetic field bioreactor, this work evaluated the chondrogenesis of scaffold-free human mesenchymal stem cell sheets in response to static and variable magnetic fields, as well as mechanical stimulation via 4.4 μm magnetic particles. Neither static nor variable magnetic fields generated by 1.44-1.45 T permanent magnets affected cartilage formation. Notably, magnetic field-induced mechanical stimulation by magnetic particles, which applied forces to the cells and ECM statically (4.39 pN) or cyclically (1...
June 7, 2017: Biomaterials Science
https://www.readbyqxmd.com/read/28589877/arthroscopic-treatment-of-chondral-defects-in-the-hip-amic-maci-microfragmented-adipose-tissue-transplantation-matt-and-other-options
#13
Eugenio Jannelli, Andrea Fontana
Chondral lesions are currently considered in the hip as a consequence of trauma, osteonecrosis, dysplasia, labral tears, loose bodies, dislocation, previous slipped capital femoral epiphysis and Femoro-Acetabular-Impingement (FAI). The management of chondral lesions is debated and several techniques are described. The physical examination must be carefully performed, followed by radiographs and magnetic resonance imaging (MRI). Differential diagnosis with other pathologies must be considered. Debridement is indicated in patients younger than 50 years with a chondropathy of 1st or 2nd degree...
2017: SICOT-J
https://www.readbyqxmd.com/read/28587284/bioluminescence-assays-for-monitoring-chondrogenic-differentiation-and-cartilage-regeneration
#14
REVIEW
Hyeon Jeong Je, Min Gu Kim, Hyuck Joon Kwon
Since articular cartilage has a limited regeneration potential, for developing biological therapies for cartilage regeneration it is important to study the mechanisms underlying chondrogenesis of stem cells. Bioluminescence assays can visualize a wide range of biological phenomena such as gene expression, signaling, metabolism, development, cellular movements, and molecular interactions by using visible light and thus contribute substantially to elucidation of their biological functions. This article gives a concise review to introduce basic principles of bioluminescence assays and applications of the technology to visualize the processes of chondrogenesis and cartilage regeneration...
June 6, 2017: Sensors
https://www.readbyqxmd.com/read/28583182/tissue-specific-bioactivity-of-soluble-tendon-derived-and-cartilage-derived-extracellular-matrices-on-adult-mesenchymal-stem-cells
#15
Benjamin B Rothrauff, Guang Yang, Rocky S Tuan
BACKGROUND: Biological scaffolds composed of tissue-derived extracellular matrix (ECM) can promote homologous (i.e., tissue-specific) cell differentiation through preservation of biophysical and biochemical motifs found in native tissues. Solubilized ECMs derived from decellularized tendon and cartilage have recently been promoted as tissue-specific biomaterials, but whether tissue-specific bioactivity is preserved following solubilization is unknown. This study explored the tissue-specific bioactivity of soluble decellularized tendon and cartilage ECMs on human bone marrow-derived mesenchymal stem cells (MSCs) presented across different culture microenvironments, including two-dimensional (2D) tissue culture plastic, aligned electrospun nanofibers, cell pellets, and cell-seeded photocrosslinkable hydrogels...
June 5, 2017: Stem Cell Research & Therapy
https://www.readbyqxmd.com/read/28583105/characteristics-and-potentials-of-stem-cells-derived-from-human-degenerated-nucleus-pulposus-potential-for-regeneration-of-the-intervertebral-disc
#16
Xiao-Chuan Li, Yong Tang, Jian-Hong Wu, Pu-Shan Yang, De-Li Wang, Di-Ke Ruan
BACKGROUND: Eliminating the symptoms during treatment of intervertebral disc degeneration (IVDD) is only a temporary solution that does not cure the underlying cause. A biological method to treat this disorder may be possible by the newly discovered nucleus pulposus derived stem cells (NPDCs). However, the uncertain characteristics and potential of NPDCs calls for a comprehensive study. METHODS: In the present study, nucleus pulposus samples were obtained from 5 patients with IVDD undergoing discectomy procedure and NPDCs were harvested using fluorescence activated cell sorting (FACS) by the co-expression of GD2(+) and Tie2(+)...
June 5, 2017: BMC Musculoskeletal Disorders
https://www.readbyqxmd.com/read/28579434/polyethylene-glycol-modified-pamam-dendrimer-delivery-of-kartogenin-to-induce-chondrogenic-differentiation-of-mesenchymal-stem-cells
#17
Qing Hu, Bomei Ding, Xiuyun Yan, Liyuan Peng, Jia Duan, Shu Yang, Lifang Cheng, Dawei Chen
Partly PEGylated polyamidoamine (PAMAM) dendrimer was used as the nanocarrier for the cytoplasmic delivery of kartogenin (KGN) to induce chondrogenic differentiation of mesenchymal stem cells (MSCs). Here, KGN was conjugated to the surface of PAMAM and the end group of polyethylene glycol (PEG) to obtain PEG-PAMAM-KGN (PPK) and KGN-PEG-PAMAM (KPP) conjugate, respectively. The effects of PPK and KPP on the in vitro chondrogenic differentiation of MSCs were evaluated. KPP induced higher expression of chondrogenic markers than PPK and free KGN...
June 1, 2017: Nanomedicine: Nanotechnology, Biology, and Medicine
https://www.readbyqxmd.com/read/28577703/basic-science-of-articular-cartilage
#18
REVIEW
Camila B Carballo, Yusuke Nakagawa, Ichiro Sekiya, Scott A Rodeo
The most challenging aspects in treating articular cartilage injury include identifying the cellular and molecular mechanism(s) that lead to matrix changes and the differentiation and dedifferentiation behavior of chondrocytes, and understanding how they affect the structural integrity of the articular cartilage and tissue remodeling. Several treatment strategies have been proposed. A better understanding of the signaling pathways and growth and transcription factors for genes responsible for chondrogenesis is an important component in the development of new therapies to prevent cartilage degeneration or promote repair to replicate the physiologic and functional properties of the original cartilage...
July 2017: Clinics in Sports Medicine
https://www.readbyqxmd.com/read/28569158/leptin-differentially-regulates-chondrogenesis-in-mouse-vertebral-and-tibial-growth-plates
#19
Bo Yu, Kaibiao Jiang, Bin Chen, Hantao Wang, Xinfeng Li, Zude Liu
BACKGROUND: Leptin plays an important role in mediating chondrogenesis of limb growth plate. Previous studies suggest that bone structures and development of spine and limb are different. The expression of Ob-Rb, the gene that encodes leptin receptors, is vertebral and appendicular region-specific, suggesting the regulation of leptin on VGP and TGP chondrogenesis may be very different. The aim of the present study was to investigate the differential regulation of leptin on the chondrogenesis of vertebral growth plate (VGP) and tibial growth plate (TGP)...
May 31, 2017: BMC Musculoskeletal Disorders
https://www.readbyqxmd.com/read/28562645/characterization-of-single-cell-derived-cultures-of-periosteal-progenitor-cells-to-ensure-the-cell-quality-for-clinical-application
#20
Stefan Stich, Alexander Loch, Su-Jin Park, Thomas Häupl, Jochen Ringe, Michael Sittinger
For clinical applications of cells and tissue engineering products it is of importance to characterize the quality of the used cells in detail. Progenitor cells from the periosteum are already routinely applied in the clinics for the regeneration of the maxillary bone. Periosteal cells have, in addition to their potential to differentiate into bone, the ability to develop into cartilage and fat. However, the question arises whether all cells isolated from periosteal biopsies are able to differentiate into all three tissue types, or whether there are subpopulations...
2017: PloS One
keyword
keyword
110153
1
2
Fetch more papers »
Fetching more papers... Fetching...
Read by QxMD. Sign in or create an account to discover new knowledge that matter to you.
Remove bar
Read by QxMD icon Read
×

Search Tips

Use Boolean operators: AND/OR

diabetic AND foot
diabetes OR diabetic

Exclude a word using the 'minus' sign

Virchow -triad

Use Parentheses

water AND (cup OR glass)

Add an asterisk (*) at end of a word to include word stems

Neuro* will search for Neurology, Neuroscientist, Neurological, and so on

Use quotes to search for an exact phrase

"primary prevention of cancer"
(heart or cardiac or cardio*) AND arrest -"American Heart Association"