Read by QxMD icon Read

Congenital disorders of glycosylation

Leslie Matalonga, Miren Bravo, Carla Serra-Peinado, Elisabeth García-Pelegrí, Olatz Ugarteburu, Silvia Vidal, Maria Llambrich, Ester Quintana, Pedro Fuster-Jorge, Maria Nieves Gonzalez-Bravo, Sergi Beltran, Joaquin Dopazo, Francisco Garcia-Garcia, François Foulquier, Gert Matthijs, Philippa Mills, Antonia Ribes, Gustavo Egea, Paz Briones, Frederic Tort, Marisa Girós
Congenital disorders of glycosylation (CDG) are a heterogeneous and rapidly growing group of diseases caused by abnormal glycosylation of proteins and/or lipids. Mutations in genes involved in the homeostasis of the endoplasmic reticulum (ER), the Golgi apparatus (GA), and the vesicular trafficking from the ER to the ER-Golgi intermediate compartment (ERGIC) have been found to be associated with CDG. Here, we report a patient with defects in both N- and O-glycosylation combined with a delayed vesicular transport in the GA due to mutations in TRAPPC11, a subunit of the TRAPPIII complex...
November 10, 2016: Human Mutation
Jaak Jaeken, Dirk J Lefeber, Gert Matthijs
No abstract text is available yet for this article.
November 9, 2016: European Journal of Human Genetics: EJHG
Patricia Yuste-Checa, Sandra Brasil, Alejandra Gámez, Jarl Underhaug, Lourdes R Desviat, Magdalena Ugarte, Celia Pérez-Cerdá, Aurora Martinez, Belén Pérez
The congenital disorder of glycosylation (CDG) due to phosphomannomutase 2 deficiency (PMM2-CDG), the most common N-glycosylation disorder, is a multisystem disease for which no effective treatment is available. The recent functional characterization of disease-causing mutations described in patients with PMM2-CDG led to the idea of a therapeutic strategy involving pharmacological chaperones (PC) to rescue PMM2 loss-of-function mutations. The present work describes the high-throughput screening, by differential scanning fluorimetry, of 10,000 low-molecular-weight compounds from a commercial library, to search for possible PCs for the enzyme PMM2...
October 24, 2016: Human Mutation
Francesca Moore, Andreas Zenkl, Kevin Carpenter
No abstract text is available yet for this article.
February 2016: Pathology
Tomokazu Kimizu, Yukitoshi Takahashi, Taikan Oboshi, Asako Horino, Takayoshi Koike, Shinsaku Yoshitomi, Tatsuo Mori, Tokito Yamaguchi, Hiroko Ikeda, Nobuhiko Okamoto, Mitsuko Nakashima, Hirotomo Saitsu, Mitsuhiro Kato, Naomichi Matsumoto, Katsumi Imai
INTRODUCTION: Mutations of SLC35A2 that encodes Golgi-localized Uridine diphosphate (UDP)-galactose transporter at Xp11.23 lead to congenital disorders of glycosylation (CDG). Although patients with CDG generally have diverse systemic symptoms, patients with a SLC35A2 mutation manifest predominantly disorders of the central nervous system (CNS). CASE REPORT: A female infant aged 12months was referred to our center because of intractable seizures. The patient was born with birth weight of 3228g after 40weeks of unremarkable gestation...
October 12, 2016: Brain & Development
Andreas J Hülsmeier, Micha Tobler, Patricie Burda, Thierry Hennet
Glycosylation is an integral part in health and disease, as emphasized by the growing number of identified glycosylation defects. In humans, proteins are modified with a diverse range of glycoforms synthesized in complex biosynthetic pathways. Glycosylation disorders have been described in congenital disorders of glycosylation (CDG) as well as in acquired disease conditions such and non-alcoholic fatty liver disease (NAFLD). A hallmark in a subset of CDG cases is the reduced glycosylation site occupancy of asparagine-linked glycans...
October 11, 2016: Scientific Reports
Johanne Dubail, Deepika Vasudevan, Lauren W Wang, Sarah E Earp, Michael W Jenkins, Robert S Haltiwanger, Suneel S Apte
Peters Plus syndrome (PPS), a congenital disorder of glycosylation, results from recessive mutations affecting the glucosyltransferase B3GLCT, leading to congenital corneal opacity and diverse extra-ocular manifestations. Together with the fucosyltransferase POFUT2, B3GLCT adds Glucoseβ1-3Fucose disaccharide to a consensus sequence in thrombospondin type 1 repeats (TSRs) of several proteins. Which of these target proteins is functionally compromised in PPS is unknown. We report here that haploinsufficiency of murine Adamts9, encoding a secreted metalloproteinase with 15 TSRs, leads to congenital corneal opacity and Peters anomaly (persistent lens-cornea adhesion), which is a hallmark of PPS...
September 30, 2016: Scientific Reports
Dorota Monies, Hindi N Alhindi, Mohamed A Almuhaizea, Mohamed Abouelhoda, Anas M Alazami, Ewa Goljan, Banan Alyounes, Dyala Jaroudi, Abdulelah AlIssa, Khalid Alabdulrahman, Shazia Subhani, Mohamed El-Kalioby, Tariq Faquih, Salma M Wakil, Nada A Altassan, Brian F Meyer, Saeed Bohlega
BACKGROUND: Fifty random genetically unstudied families (limb-girdle muscular dystrophy (LGMD)/myopathy) were screened with a gene panel incorporating 759 OMIM genes associated with neurological disorders. Average coverage of the CDS and 10 bp flanking regions of genes was 99 %. All families were referred to the Neurosciences Clinic of King Faisal Specialist Hospital and Research Centre, Saudi Arabia. Patients presented with muscle weakness affecting the pelvic and shoulder girdle. Muscle biopsy in all cases showed dystrophic or myopathic changes...
September 27, 2016: Human Genomics
Sheng-Tao Li, Ning Wang, Sha Xu, Jian Yin, Hideki Nakanishi, Neta Dean, Xiao-Dong Gao
BACKGROUND: Asparagine (N)-linked glycosylation begins with a stepwise synthesis of the dolichol-linked oligosaccharide (DLO) precursor, Glc3Man9GlcNAc2-PP-Dol, which is catalyzed by a series of endoplasmic reticulum membrane-associated glycosyltransferases. Yeast ALG1 (asparagine-linked glycosylation 1) encodes a β-1, 4 mannosyltransferase that adds the first mannose onto GlcNAc2-PP-Dol to produce a core trisaccharide Man1GlcNAc2-PP-Dol. ALG1 is essential for yeast viability, and in humans mutations in the ALG1 cause congenital disorders of glycosylation known as ALG1-CDG...
September 23, 2016: Biochimica et Biophysica Acta
Ryan P Berger, Michelle Dookwah, Richard Steet, Stephen Dalton
Glycosylation refers to the co- and post-translational modification of protein and lipids by monosaccharides or oligosaccharide chains. The surface of mammalian cells is decorated by a heterogeneous and highly complex array of protein and lipid linked glycan structures that vary significantly between different cell types, raising questions about their roles in development and disease pathogenesis. This review will begin by focusing on recent findings that define roles for cell surface protein and lipid glycosylation in pluripotent stem cells and their functional impact during normal development...
September 26, 2016: BioEssays: News and Reviews in Molecular, Cellular and Developmental Biology
Albert Barroso, Estela Giménez, Fernando Benavente, José Barbosa, Victoria Sanz-Nebot
In this work, we describe a multivariate data analysis approach for data exploration and classification of the complex and large data sets generated to study the alteration of human transferrin (Tf) N-glycopeptides in patients with congenital disorders of glycosylation (CDG). Tf from healthy individuals and two types of CDG patients (CDG-I and CDG-II) is purified by immunoextraction from serum samples before trypsin digestion and separation by capillary liquid chromatography mass spectrometry (CapLC-MS). Following a targeted data analysis approach, partial least squares discriminant analysis (PLS-DA) is applied to the relative abundance of Tf glycopeptide glycoforms obtained after integration of the extracted ion chromatograms of the different samples...
November 1, 2016: Talanta
Adriana Izquierdo-Lahuerta, Oscar de Luis, Francisco Gómez-Esquer, Jesús Cruces, Antonio Coloma
Alpha-dystroglycanopathies are a heterogenic group of human rare diseases that have in common defects of α-dystroglycan O-glycosylation. These congenital disorders share common features as muscular dystrophy, malformations on central nervous system and more rarely altered ocular development, as well as mutations on a set of candidate genes involved on those syndromes. Severity of the syndromes is variable, appearing Walker-Warburg as the most severe where mutations at protein O-mannosyl transferases POMT1 and POMT2 genes are frequently described...
September 23, 2016: Biochemical and Biophysical Research Communications
Ashwini Maratha, Hugh-Owen Colhoun, Ina Knerr, Karen P Coss, Peter Doran, Eileen P Treacy
Classical galactosaemia is a rare disorder of carbohydrate metabolism caused by galactose-1-phosphate uridyltransferase (GALT) deficiency (EC The disease is life threatening if left untreated in neonates and the only available treatment option is a long-term galactose restricted diet. While this is lifesaving in the neonate, complications persist in treated individuals, and the cause of these, despite early initiation of treatment, and shared GALT genotypes remain poorly understood. Systemic abnormal glycosylation has been proposed to contribute substantially to the ongoing pathophysiology...
August 9, 2016: JIMD Reports
C Bursle, D Brown, J Cardinal, F Connor, S Calvert, D Coman
The literature describes eight cases of mutations in the DPM1 gene generating DMP1-CDG, causing similar phenotype of early onset seizures, microcephaly and developmental delay. Investigations of these patients revealed associated abnormal findings on brain imaging, elevated CK, abnormal clotting factors and mildly deranged serum transaminases. We describe the ninth case of DMP1-CDG, whose clinical presentation includes severe gastrointestinal involvement, i.e. food protein induced enterocolitis syndrome (FPIES)...
August 2, 2016: JIMD Reports
Patricia G Wheeler, Bobby G Ng, Laura Sanford, V Reid Sutton, Dennis W Bartholomew, Matthew T Pastore, Michael J Bamshad, Martin Kircher, Kati J Buckingham, Deborah A Nickerson, Jay Shendure, Hudson H Freeze
Increasing numbers of congenital disorders of glycosylation (CDG) have been reported recently resulting in an expansion of the phenotypes associated with this group of disorders. SRD5A3 codes for polyprenol reductase which converts polyprenol to dolichol. This is a major pathway for dolichol biosynthesis for N-glycosylation, O-mannosylation, C-mannosylation, and GPI anchor synthesis. We present the features of five individuals (three children and two adults) with mutations in SRD5A3 focusing on the variable eye and skin involvement...
December 2016: American Journal of Medical Genetics. Part A
Brian J Vaccaro, W Andrew Lancaster, Michael P Thorgersen, Grant M Zane, Adam D Younkin, Alexey E Kazakov, Kelly M Wetmore, Adam Deutschbauer, Adam P Arkin, Pavel S Novichkov, Judy D Wall, Michael W W Adams
UNLABELLED: Metal ion transport systems have been studied extensively, but the specificity of a given transporter is often unclear from amino acid sequence data alone. In this study, predicted Cu(2+) and Zn(2+) resistance systems in Pseudomonas stutzeri strain RCH2 are compared with those experimentally implicated in Cu(2+) and Zn(2+) resistance, as determined by using a DNA-barcoded transposon mutant library. Mutant fitness data obtained under denitrifying conditions are combined with regulon predictions to yield a much more comprehensive picture of Cu(2+) and Zn(2+) resistance in strain RCH2...
October 1, 2016: Applied and Environmental Microbiology
Chrissa A Dwyer, Jeffrey D Esko
Idiopathic autism spectrum disorders (ASDs) are neurodevelopmental disorders with unknown etiology. An estimated 1:68 children in the U.S. are diagnosed with ASDs, making these disorders a substantial public health issue. Recent advances in genome sequencing have identified numerous genetic variants across the ASD patient population. Many genetic variants identified occur in genes that encode glycosylated extracellular proteins (proteoglycans or glycoproteins) or enzymes involved in glycosylation (glycosyltransferases and sulfotransferases)...
October 2016: Molecular Aspects of Medicine
Eudoxie Dulary, Sven Potelle, Dominique Legrand, François Foulquier
Congenital Disorders of Glycosylation (CDG) are rare inherited diseases causing glycosylation defects responsible for severe growth and psychomotor retardations in patients. Whereas most genetic defects affect enzymes directly involved in the glycosylation process, like glycosyltransferases or sugar transporters, recent findings revealed the impact of gene mutations on proteins implicated in both Golgi vesicular trafficking and ion homeostasis. TMEM165 is one of these deficient Golgi proteins found in CDG patients whose function in the secretory pathway has been deduced from several recent studies using TMEM165 deficient mammalian cells or yeast cells deficient in Gtd1p, the yeast TMEM165 ortholog...
June 16, 2016: Tissue & Cell
Christine Vianey-Saban, Cécile Acquaviva, David Cheillan, Sophie Collardeau-Frachon, Laurent Guibaud, Cécile Pagan, Magali Pettazzoni, Monique Piraud, Antonin Lamazière, Roseline Froissart
Inborn errors of metabolism (IEMs) that present with abnormal imaging findings in the second half of pregnancy are mainly lysosomal storage disorders (LSDs), cholesterol synthesis disorders (CSDs), glycogen storage disorder type IV (GSD IV), peroxisomal disorders, mitochondrial fatty acid oxidation defects (FAODs), organic acidurias, aminoacidopathies, congenital disorders of glycosylation (CDGs), and transaldolase deficiency. Their biological investigation requires fetal material. The supernatant of amniotic fluid (AF) is useful for the analysis of mucopolysaccharides, oligosaccharides, sialic acid, lysosphingolipids and some enzyme activities for LSDs, 7- and 8-dehydrocholesterol, desmosterol and lathosterol for CSDs, acylcarnitines for FAODs, organic acids for organic acidurias, and polyols for transaldolase deficiency...
September 2016: Journal of Inherited Metabolic Disease
Maria Monticelli, Tiago Ferro, Jaak Jaeken, Vanessa Dos Reis Ferreira, Paula A Videira
Congenital disorders of glycosylation (CDG) are a rapidly growing family of genetic diseases comprising more than 85 known distinct disorders. They show a great phenotypic variability ranging from multi-organ/system to mono-organ/system involvement with very mild to extremely severe expression. Immunological dysfunction has a significant impact on the phenotype in a minority of CDG. CDG with major immunological involvement are ALG12-CDG, MAGT1-CDG, MOGS-CDG, SLC35C1-CDG and PGM3-CDG. This review discusses the variety of immunological abnormalities reported in human CDG...
July 8, 2016: Journal of Inherited Metabolic Disease
Fetch more papers »
Fetching more papers... Fetching...
Read by QxMD. Sign in or create an account to discover new knowledge that matter to you.
Remove bar
Read by QxMD icon Read

Search Tips

Use Boolean operators: AND/OR

diabetic AND foot
diabetes OR diabetic

Exclude a word using the 'minus' sign

Virchow -triad

Use Parentheses

water AND (cup OR glass)

Add an asterisk (*) at end of a word to include word stems

Neuro* will search for Neurology, Neuroscientist, Neurological, and so on

Use quotes to search for an exact phrase

"primary prevention of cancer"
(heart or cardiac or cardio*) AND arrest -"American Heart Association"