keyword
MENU ▼
Read by QxMD icon Read
search

pluripotent stem cell hair cell

keyword
https://www.readbyqxmd.com/read/28459451/generation-of-inner-ear-organoids-containing-functional-hair-cells-from-human-pluripotent-stem-cells
#1
Karl R Koehler, Jing Nie, Emma Longworth-Mills, Xiao-Ping Liu, Jiyoon Lee, Jeffrey R Holt, Eri Hashino
The derivation of human inner ear tissue from pluripotent stem cells would enable in vitro screening of drug candidates for the treatment of hearing and balance dysfunction and may provide a source of cells for cell-based therapies of the inner ear. Here we report a method for differentiating human pluripotent stem cells to inner ear organoids that harbor functional hair cells. Using a three-dimensional culture system, we modulate TGF, BMP, FGF, and WNT signaling to generate multiple otic-vesicle-like structures from a single stem-cell aggregate...
May 1, 2017: Nature Biotechnology
https://www.readbyqxmd.com/read/28387239/survival-of-human-embryonic-stem-cells-implanted-in-the-guinea-pig-auditory-epithelium
#2
Min Young Lee, Sandra Hackelberg, Kari L Green, Kelly G Lunghamer, Takaomi Kurioka, Benjamin R Loomis, Donald L Swiderski, R Keith Duncan, Yehoash Raphael
Hair cells in the mature cochlea cannot spontaneously regenerate. One potential approach for restoring hair cells is stem cell therapy. However, when cells are transplanted into scala media (SM) of the cochlea, they promptly die due to the high potassium concentration. We previously described a method for conditioning the SM to make it more hospitable to implanted cells and showed that HeLa cells could survive for up to a week using this method. Here, we evaluated the survival of human embryonic stem cells (hESC) constitutively expressing GFP (H9 Cre-LoxP) in deaf guinea pig cochleae that were pre-conditioned to reduce potassium levels...
April 7, 2017: Scientific Reports
https://www.readbyqxmd.com/read/28345660/zinc-deficiency-and-low-enterocyte-zinc-transporter-expression-in-human-patients-with-autism-related-mutations-in-shank3
#3
Stefanie Pfaender, Ann Katrin Sauer, Simone Hagmeyer, Katharina Mangus, Leonhard Linta, Stefan Liebau, Juergen Bockmann, Guillaume Huguet, Thomas Bourgeron, Tobias M Boeckers, Andreas M Grabrucker
Phelan McDermid Syndrome (PMDS) is a genetic disorder characterized by features of Autism spectrum disorders. Similar to reports of Zn deficiency in autistic children, we have previously reported high incidence of Zn deficiency in PMDS. However, the underlying mechanisms are currently not well understood. Here, using inductively coupled plasma mass-spectrometry to measure the concentration of Zinc (Zn) and Copper (Cu) in hair samples from individuals with PMDS with 22q13.3 deletion including SHANK3 (SH3 and multiple ankyrin repeat domains 3), we report a high rate of abnormally low Zn/Cu ratios...
March 27, 2017: Scientific Reports
https://www.readbyqxmd.com/read/28220862/induction-of-hair-follicle-dermal-papilla-cell-properties-in-human-induced-pluripotent-stem-cell-derived-multipotent-lngfr-thy-1-mesenchymal-cells
#4
Ophelia Veraitch, Yo Mabuchi, Yumi Matsuzaki, Takashi Sasaki, Hironobu Okuno, Aki Tsukashima, Masayuki Amagai, Hideyuki Okano, Manabu Ohyama
The dermal papilla (DP) is a specialised mesenchymal component of the hair follicle (HF) that plays key roles in HF morphogenesis and regeneration. Current technical difficulties in preparing trichogenic human DP cells could be overcome by the use of highly proliferative and plastic human induced pluripotent stem cells (hiPSCs). In this study, hiPSCs were differentiated into induced mesenchymal cells (iMCs) with a bone marrow stromal cell phenotype. A highly proliferative and plastic LNGFR(+)THY-1(+) subset of iMCs was subsequently programmed using retinoic acid and DP cell activating culture medium to acquire DP properties...
February 21, 2017: Scientific Reports
https://www.readbyqxmd.com/read/28192743/behavior-of-leucine-rich-repeat-containing-g-protein-coupled-receptor-5-expressing-cells-in-the-reprogramming-process
#5
Yuko Arioka, Hiroyasu Ito, Akihiro Hirata, Katsunori Semi, Yasuhiro Yamada, Mitsuru Seishima
It remains unclear what cells are proper for the generation of induced pluripotent stem cells (iPSCs). Leucine-rich repeat-containing G-protein coupled receptor 5 (Lgr5) is well known as a tissue stem cell and progenitor marker, both of which are reported to be sensitive to reprogramming. In the present study, we examined the reprogramming behavior of Lgr5-expressing cells (Lgr5+ cells). First, we compared reprogramming behavior using mouse Lgr5+ and Lgr5 negative (Lgr5-) hair follicles (HFs). The number of alkaline phosphatase staining-positive cells was lesser in a well of Lgr5+ HFs than in Lgr5- HFs; however, the ratio of Nanog+ SSEA1+ cells in the cell mixture derived from Lgr5+ HFs was much higher than that from Lgr5- HFs...
April 2017: Stem Cell Research
https://www.readbyqxmd.com/read/27966334/study-of-mouse-induced-pluripotent-stem-cell-transplantation-intowistar-albino-rat-cochleae-after-hair-cell-damage
#6
Mustafa Kürşat Gökcan, Selçuk Mülazimoğlu, Emre Ocak, Pınar Can, Murat Çalışkan, Ömer Beşaltı, Serpil Dizbay Sak, Gülşah Kaygusuz
BACKGROUND/AIM: As the regeneration capacity of hair cells is limited, inner ear stem cell therapies hold promise. Effects of mouse induced pluripotent stem cells (IPSCs) on Wistar albino rats (WARs) with hearing impairment were investigated. MATERIALS AND METHODS: Thirty-five adult WARs with normal hearing were divided into 4 groups. Excluding the study group (n = 15), the other three groups served as control groups for ototoxicity and IPSC injection models. IPSC injections were performed via cochleostomy after a retroauricular approach...
November 17, 2016: Turkish Journal of Medical Sciences
https://www.readbyqxmd.com/read/27880068/human-hair-follicle-associated-pluripotent-hhap-stem-cells-differentiate-to-cardiac-muscle-cells
#7
Natsuko Tohgi, Koya Obara, Masateru Yashiro, Yuko Hamada, Nobuko Arakawa, Sumiyuki Mii, Ryoichi Aki, Robert M Hoffman, Yasuyuki Amoh
We have previously demonstrated that nestin-expressing hair follicle-associated-pluripotent (HAP) stem cells are located in the bulge area. HAP stem cells have been previously shown to differentiate to neurons, glial cells, keratinocytes, smooth-muscle cells, melanocytes and cardiac-muscle cells in vitro. Subsequently, we demonstrated that HAP stem cells could effect nerve and spinal cord regeneration in mouse models, differentiating to Schwann cells and neurons. In previous studies, we established an efficient protocol for the differentiation of cardiac-muscle cells from mouse HAP stem cells...
January 2, 2017: Cell Cycle
https://www.readbyqxmd.com/read/27867768/induced-pluripotent-stem-cells-from-human-hair-follicle-keratinocytes-as-a-potential-source-for-in-vitro-hair-follicle-cloning
#8
Sheng Jye Lim, Shu Cheow Ho, Pooi Ling Mok, Kian Lee Tan, Alan H K Ong, Seng Chiew Gan
BACKGROUND: Human hair follicles are important for the renewal of new hairs and their development. The generation of induced pluripotent stem cells (iPSCs) from hair follicles is easy due to its accessibility and availability. The pluripotent cells derived from hair follicles not only have a higher tendency to re-differentiate into hair follicles, but are also more suited for growth in hair scalp tissue microenvironment. METHODS: In this study, human hair follicular keratinocytes were used to generate iPSCs, which were then further differentiated in vitro into keratinocytes...
2016: PeerJ
https://www.readbyqxmd.com/read/27837565/cryopreservation-of-hair-follicle-associated-pluripotent-hap-stem-cells-maintains-differentiation-and-hair-growth-potential
#9
Robert M Hoffman, Satoshi Kajiura, Wenluo Cao, Fang Liu, Yasuyuki Amoh
Hair follicles contain nestin-expressing pluripotent stem cells which originate above the bulge area of the follicle, below the sebaceous gland. We have termed these cells hair follicle-associated pluripotent (HAP) stem cells. We have established efficient cryopreservation methods of the hair follicle that maintain the pluripotency of HAP stem cells as well as hair growth. We cryopreserved the whole hair follicle by slow-rate cooling in TC-Protector medium or in DMSO-containing medium and storage in liquid nitrogen or at -80 °C...
2016: Advances in Experimental Medicine and Biology
https://www.readbyqxmd.com/read/27627796/hypoxia-enhances-differentiation-of-hair-follicle-associated-pluripotent-hap-stem-cells-to-cardiac-muscle-cells
#10
Kyoumi Shirai, Yuko Hamada, Nobuko Arakawa, Aiko Yamazaki, Natsuko Tohgi, Ryoichi Aki, Sumiyuki Mii, Robert M Hoffman, Yasuyuki Amoh
We have previously demonstrated that the neural stem-cell marker nestin is expressed in hair follicle stem cells located in the bulge area which are termed hair-follicle-associated pluripotent (HAP) stem cells. HAP stem cells from mouse and human could form spheres in culture, termed hair spheres, which are keratin 15-negative and CD34-positive and could differentiate to neurons, glia, keratinocytes, smooth muscle cells, and melanocytes in vitro. Subsequently, we demonstrated that nestin-expressing stem cells could effect nerve and spinal cord regeneration in mouse models...
September 14, 2016: Journal of Cellular Biochemistry
https://www.readbyqxmd.com/read/27550649/transcriptome-and-proteome-characterization-of-surface-ectoderm-cells-differentiated-from-human-ipscs
#11
Ying Qu, Bo Zhou, Wei Yang, Bingchen Han, Yi Yu-Rice, Bowen Gao, Jeffery Johnson, Clive N Svendsen, Michael R Freeman, Armando E Giuliano, Dhruv Sareen, Xiaojiang Cui
Surface ectoderm (SE) cells give rise to structures including the epidermis and ectodermal associated appendages such as hair, eye, and the mammary gland. In this study, we validate a protocol that utilizes BMP4 and the γ-secretase inhibitor DAPT to induce SE differentiation from human induced pluripotent stem cells (hiPSCs). hiPSC-differentiated SE cells expressed markers suggesting their commitment to the SE lineage. Computational analyses using integrated quantitative transcriptomic and proteomic profiling reveal that TGFβ superfamily signaling pathways are preferentially activated in SE cells compared with hiPSCs...
August 23, 2016: Scientific Reports
https://www.readbyqxmd.com/read/27431257/protocols-for-cryopreservation-of-intact-hair-follicle-that-maintain-pluripotency-of-nestin-expressing-hair-follicle-associated-pluripotent-hap-stem-cells
#12
Satoshi Kajiura, Sumiyuki Mii, Ryoichi Aki, Yuko Hamada, Nobuko Arakawa, Katsumasa Kawahara, Lingna Li, Kensei Katsuoka, Robert M Hoffman, Yasuyuki Amoh
Hair follicles contain nestin-expressing pluripotent stem cells, the origin of which is above the bulge area, below the sebaceous gland. We have termed these cells hair-follicle-associated pluripotent (HAP) stem cells. Cryopreservation methods of the hair follicle that maintain the pluripotency of HAP stem cells are described in this chapter. Intact hair follicles from green fluorescent protein (GFP) transgenic mice were cryopreserved by slow-rate cooling in TC-Protector medium and storage in liquid nitrogen...
2016: Methods in Molecular Biology
https://www.readbyqxmd.com/read/27431256/highly-efficient-neural-differentiation-of-cd34-positive-hair-follicle-associated-pluripotent-stem-cells-induced-by-retinoic-acid-and-serum-free-medium
#13
Mohsen Sagha, Nowruz Najafzadeh
Neural differentiation of hair-follicle-associated pluripotent (HAP) stem cells residing in the bulge area is a promising autologous source for stem cell therapy. In the present chapter, we describe the identification and enrichment of CD34(+) HAP stem cells by magnetic-activated cell sorting (MACS), and induce them to differentiate into neuronal and glial cells using defined neural-induction media. The different neural cell populations arising during in vitro differentiation from HAP stem cells are characterized by reverse transcription polymerase chain reaction (RT-PCR) and immunocytochemistry assay...
2016: Methods in Molecular Biology
https://www.readbyqxmd.com/read/27431255/protocols-for-efficient-differentiation-of-hair-follicle-associated-pluripotent-hap-stem-cells-to-beating-cardiac-muscle-cells
#14
Masateru Yashiro, Sumiyuki Mii, Ryoichi Aki, Yuko Hamada, Nobuko Arakawa, Katsumasa Kawahara, Robert M Hoffman, Yasuyuki Amoh
We have previously demonstrated that the nestin-expressing cells from the upper part of the hair follicle can differentiate to neurons and other cell types. We have termed these cells as hair-associated-pluripotent (HAP) stem cells. In the present chapter, we describe methods for HAP stem cells to differentiate to beating cardiac muscle cells. The mouse vibrissa hair follicle was divided into three parts (upper, middle, and lower), and each part was suspended separately in DMEM containing 10 % fetal bovine serum (FBS)...
2016: Methods in Molecular Biology
https://www.readbyqxmd.com/read/27431254/protocols-for-gelfoam-%C3%A2-histoculture-of-hair-shaft-producing-mouse-whisker-follicles-containing-nestin-gfp-expressing-hair-follicle-associated-pluripotent-hap-stem-cells-for-long-time-periods
#15
Wenluo Cao, Fang Liu, Yasuyuki Amoh, Robert M Hoffman
Gelfoam(®)-histocultured whisker follicles from nestin-driven-green fluorescent protein (ND-GFP) mice produced growing pigmented and unpigmented hair shafts. Hair-shaft length increased rapidly by day 4 and continued growing until at least day 12 after which the hair-shaft length was constant. By day 63 in histoculture, the number of ND-GFP hair follicle-associated pluripotent (HAP) stem cells increased significantly and the follicles were intact. Three-dimensional Gelfoam(®) histoculture of hair follicles can provide a very long-term period for evaluating novel agents to promote hair growth...
2016: Methods in Molecular Biology
https://www.readbyqxmd.com/read/27431253/protocols-for-ectopic-hair-growth-from-transplanted-whisker-follicles-on-the-spinal-cord-of-mice
#16
Wenluo Cao, Fang Liu, Yasuyuki Amoh, Robert M Hoffman
Isolated whisker follicles from nestin-driven green fluorescent protein (ND-GFP) mice, containing hair-associated pluripotent (HAP) stem cells, were histocultured in three dimensions on Gelfoam(®) for 3 weeks for subsequent transplantation to the spinal cord in order to heal an induced injury with the HAP stem cells. The hair shafts were removed from Gelfoam(®)-histocultured whisker follicles, and the remaining parts of the whisker follicles, containing GFP-nestin-expressing (HAP) stem cells, were transplanted into the injured spinal cord of nude mice, along with the Gelfoam(®)...
2016: Methods in Molecular Biology
https://www.readbyqxmd.com/read/27431246/isolation-and-culture-of-neural-crest-stem-cells-from-human-hair-follicles
#17
Ruifeng Yang, Xiaowei Xu
The hair follicle undergoes lifelong cycling and growth. Previous studies have been focused on epithelial stem cells in the hair follicles. Neural crest stem cells (NCSCs) are pluripotent cells that can persist in adult tissues. We have previously demonstrated that human NCSCs can be isolated from hair follicles. Here, we present a protocol to isolate NCSCs from human hair follicles based on their specific surface-marker expression of CD271/HNK1 or CD271/CD49D (alpha4 integrin). NCSCs can be expanded in the culture as neural spheres or attached cells...
2016: Methods in Molecular Biology
https://www.readbyqxmd.com/read/27431245/nestin-expressing-hair-follicle-associated-pluripotent-hap-stem-cells-promote-whisker-sensory-nerve-growth-in-long-term-3d-gelfoam%C3%A2-histoculture
#18
Sumiyuki Mii, Jennifer Duong, Yasunori Tome, Aisada Uchugonova, Fang Liu, Yasuyuki Amoh, Norimitsu Saito, Kensei Katsuoka, Robert M Hoffman
Mouse whiskers containing hair-follicle-associated pluripotent (HAP) stem cells, from nestin-driven green fluorescent protein (ND-GFP) transgenic mice, were placed in 3D histoculture supported by Gelfoam(®). β-III tubulin-positive fibers, consisting of ND-GFP-expressing HAP stem cells, extended up to 500 mm from the whisker nerve stump in histoculture. The growing fibers had growth cones on their tips expressing F-actin indicating they were growing axons. The growing whisker sensory nerve was highly enriched in ND-GFP HAP stem cells which appeared to play a major role in its elongation and interaction with other nerves placed in 3D culture, including the sciatic nerve, the trigeminal nerve, and the trigeminal nerve ganglion...
2016: Methods in Molecular Biology
https://www.readbyqxmd.com/read/27431243/peripheral-nerve-and-spinal-cord-regeneration-in-mice-using-hair-follicle-associated-pluripotent-hap-stem-cells
#19
Yasuyuki Amoh, Kensei Katsuoka, Robert M Hoffman
Nestin, a neural stem cell marker protein, is expressed in hair follicle cells above the bulge area. These nestin-positive hair follicle-associated-pluripotent (HAP) stem cells are negative for the keratinocyte marker K15 and can differentiate into neurons, glia, keratinocytes, smooth muscle cells, cardiac muscle cells, and melanocytes in vitro. HAP stem cells are positive for the stem cell marker CD34, as well as K15-negative, suggesting their relatively undifferentiated state. HAP stem cells promoted the functional recovery of injured peripheral nerves and the spinal cord...
2016: Methods in Molecular Biology
https://www.readbyqxmd.com/read/27431242/discovery-of-hap-stem-cells
#20
Lingna Li, Robert M Hoffman
Cells expressing the stem cell marker, nestin, were selectively labeled in transgenic mice by placing green fluorescent protein (GFP) under the control of the nestin promoter in transgenic mice. In these transgenic mice, neural and other stem cells brightly expressed GFP. The mice were termed nestin-driven GFP (ND-GFP) mice. During early anagen or growth phase of the hair follicle, ND-GFP appeared in the permanent upper hair follicle immediately below the sebaceous glands in the follicle bulge. The relatively small, oval-shaped, nestin-expressing cells in the bulge area surrounded the hair shaft and were interconnected by short dendrites...
2016: Methods in Molecular Biology
keyword
keyword
109947
1
2
Fetch more papers »
Fetching more papers... Fetching...
Read by QxMD. Sign in or create an account to discover new knowledge that matter to you.
Remove bar
Read by QxMD icon Read
×

Search Tips

Use Boolean operators: AND/OR

diabetic AND foot
diabetes OR diabetic

Exclude a word using the 'minus' sign

Virchow -triad

Use Parentheses

water AND (cup OR glass)

Add an asterisk (*) at end of a word to include word stems

Neuro* will search for Neurology, Neuroscientist, Neurological, and so on

Use quotes to search for an exact phrase

"primary prevention of cancer"
(heart or cardiac or cardio*) AND arrest -"American Heart Association"