Read by QxMD icon Read

Lactate AND PQQ

Yusuke Yamauchi, Yosi Nindita, Keisuke Hara, Asako Umeshiro, Yu Yabuuchi, Toshihiro Suzuki, Haruyasu Kinashi, Kenji Arakawa
Reinvestigation of the metabolite profile in a disruptant of the quinoprotein dehydrogenase (orf23) gene revealed that the Orf23 protein catalyzes dehydrogenation of the C23-C25 lactate moiety to pyruvate during lankacidin biosynthesis in Streptomyces rochei 7434AN4. The dehydrogenase activity was expressed and detected in a soluble fraction of the Streptomyceslividans recombinant harboring orf23. The Orf23 protein preferentially converts lankacidinol to lankacidin C in the presence of pyrroloquinoline quinone (PQQ)...
June 2, 2018: Journal of Bioscience and Bioengineering
Sarita Nehra, Varun Bhardwaj, Anju Bansal, Deepika Saraswat
BACKGROUND: Chronic hypobaric hypoxia (cHH) mediated cardiac insufficiencies are associated with pathological damage. Sustained redox stress and work load are major causative agents of cardiac insufficiencies under cHH. Despite the advancements made in pharmacological (anti-oxidants, vasodilators) and non-pharmacological therapeutics (acclimatization strategies and schedules), only partial success has been achieved in improving cardiac acclimatization to cHH. This necessitates the need for potent combinatorial therapies to improve cardiac acclimatization at high altitudes...
September 26, 2017: Journal of Basic and Clinical Physiology and Pharmacology
Pengju Zhang, Yongqi Ye, Yuhang Qian, Baoxin Yin, Jianmei Zhao, Shunxin Zhu, Li Zhang, Meijuan Yan
BACKGROUND: Pyrroloquinoline quinone is an anionic, water-soluble compound with antioxidant characteristic. The role of pyrroloquinoline quinone in pharmacology and nutrition has attracted wide attention of researchers. Although a few experiments have confirmed that pyrroloquinoline quinone plays an obvious effective role in neuroprotection. There are few reports about the effect of pyrroloquinoline quinone on traumatic brain injury. Traumatic brain injury is one of the leading causes for adult disability and death...
2017: CNS & Neurological Disorders Drug Targets
Karen R Jonscher, Michael S Stewart, Alba Alfonso-Garcia, Brian C DeFelice, Xiaoxin X Wang, Yuhuan Luo, Moshe Levi, Margaret J R Heerwagen, Rachel C Janssen, Becky A de la Houssaye, Ellen Wiitala, Garrett Florey, Raleigh L Jonscher, Eric O Potma, Oliver Fiehn, Jacob E Friedman
Nonalcoholic fatty liver disease (NAFLD) is widespread in adults and children. Early exposure to maternal obesity or Western-style diet (WD) increases steatosis and oxidative stress in fetal liver and is associated with lifetime disease risk in the offspring. Pyrroloquinoline quinone (PQQ) is a natural antioxidant found in soil, enriched in human breast milk, and essential for development in mammals. We investigated whether a supplemental dose of PQQ, provided prenatally in a mouse model of diet-induced obesity during pregnancy, could protect obese offspring from progression of NAFLD...
April 2017: FASEB Journal: Official Publication of the Federation of American Societies for Experimental Biology
Mitsugu Akagawa, Kenji Minematsu, Takahiro Shibata, Tatsuhiko Kondo, Takeshi Ishii, Koji Uchida
Pyrroloquinoline quinone (PQQ), a redox-active o-quinone, is an important nutrient involved in numerous physiological and biochemical processes in mammals. Despite such beneficial functions, the underlying molecular mechanisms remain to be established. In the present study, using PQQ-immobilized Sepharose beads as a probe, we examined the presence of protein(s) that are capable of binding PQQ in mouse NIH/3T3 fibroblasts and identified five cellular proteins, including l-lactate dehydrogenase (LDH) A chain, as potential mammalian PQQ-binding proteins...
May 27, 2016: Scientific Reports
Becky L Treu, Shelley D Minteer
This research details the isolation and purification of a new type of lactate dehydrogenase that is dependent upon the coenzyme pyrroloquinoline quinone (PQQ). PQQ-dependent enzymes have been of interest in the literature over the last decade due to the fact that many of them can undergo direct electron transfer (DET) at electrode surfaces which is of interest for biosensor and biofuel cell applications. In the paper, we detail the isolation of PQQ-dependent lactate dehydrogenase (PQQ-LDH) from two sources of Gluconobacter (Gluconobacter sp...
November 2008: Bioelectrochemistry
Eugenii Katz, Oleg Lioubashevski, Itamar Willner
The effect of a constant magnetic field on bioelectrocatalytic transformations of three different enzyme assemblies linked to electrodes is examined and correlated with a theoretical magnetohydrodynamic model. The systems consist of surface-reconstituted glucose oxidase (GOx), an integrated lactate dehydrogenase/nicotinamide/pyrroloquinoline quinone assembly (LDH/NAD+ -PQQ), and a cytochrome c/cytochrome oxidase system (Cyt c/COx) linked to the electrodes. Pronounced effects of a constant magnetic field applied parallel to the electrode surface are observed for the bioelectrocatalyzed oxidation of glucose and lactate by the GOx-electrode and LDH/NAD+ -PQQ-electrode, respectively...
March 23, 2005: Journal of the American Chemical Society
Francene Steinberg, Tracy E Stites, Peter Anderson, David Storms, Ivan Chan, Sheila Eghbali, Robert Rucker
Growth, reproductive performance, and indices of collagen maturation and expression were investigated in Balb/c mice fed chemically defined, amino acid-based diets with or without the addition 6 micro Mpyrroloquinoline quinone (PQQ)/kg diet. The diets were fed to virgin mice for 8 weeks before breeding. At weaning, the pups from successful pregnancies were fed the same diet as their respective dams. Reproductive performance was compromised in mice fed diets devoid of PQQ, and their offspring grew at slower rates than offspring from mice fed diets supplemented with PQQ...
February 2003: Experimental Biology and Medicine
Maya Zayats, Eugenii Katz, Itamar Willner
The preparation of integrated, electrically contacted, flavoenzyme and NAD(P)(+)-dependent enzyme-electrodes is described. The reconstitution of apo-glucose oxidase, apo-GOx, on a FAD cofactor linked to a pyrroloquinoline quinone (PQQ) phenylboronic acid monolayer yields an electrically contacted enzyme monolayer (surface coverage 2.1 x 10(-)(12) mol cm(-)(2)) exhibiting a turnover rate of 700 s(-)(1) (at 22 +/- 2 degrees C). The system is characterized by microgravimetric quartz-crystal microbalance analyses, Faradaic impedance spectroscopy, rotating disk electrode experiments, and cyclic voltammetry...
December 11, 2002: Journal of the American Chemical Society
Eugenii Katz, Laila Sheeney-Haj-Ichia, Itamar Willner
Magnetic switching of redox reactions and bioelectrocatalytic transformations is accomplished in the presence of relay-functionalized magnetite particles (Fe(3)O(4)). The electrochemistry of a naphthoquinone (1), pyrroloquinoline quinone (2; PQQ), microperoxidase-11 (3), a ferrocene derivative (4) and a bipyridinium derivative (5), functionalized magnetic particles, is switched "ON" and "OFF" by an external magnet upon the attraction of the magnetic particles to an electrode or their retraction from the electrode, respectively...
September 16, 2002: Chemistry: a European Journal
E Katz, A F Bückmann, I Willner
No abstract text is available yet for this article.
October 31, 2001: Journal of the American Chemical Society
A S Vangnai, D J Arp
Butane-grown "Pseudomonas butanovora" expressed two soluble alcohol dehydrogenases (ADHs), an NAD(+)-dependent secondary ADH and an NAD(+)-independent primary ADH. Two additional NAD(+)-dependent secondary ADHs could be detected when cells were grown on 2-butanol and lactate. The inducible NAD(+)-independent 1-butanol dehydrogenase (BDH) of butane-grown cells was primarily responsible for 1-butanol oxidation in the butane metabolism pathway. BDH was purified to near homogeneity and identified as a quinohaemoprotein, containing, per mol enzyme, 1...
March 2001: Microbiology
M Zayats, A B Kharitonov, E Katz, A F Bückmann, I Willner
An integrated NAD+-dependent enzyme field-effect transistor (ENFET) device for the biosensing of lactate is described. The aminosiloxane-functionalized gate interface is modified with pyrroloquinoline quinone (PQQ) that acts as a catalyst for the oxidation of NADH. Synthetic amino-derivative of NAD+ is covalently linked to the PQQ monolayer. An affinity complex formed between the NAD+/PQQ-assembly and the NAD+-cofactor-dependent lactate dehydrogenase (LDH) is crosslinked and yields an integrated biosensor ENFET-device for the analysis of lactate...
2000: Biosensors & Bioelectronics
E Katz, V Heleg-Shabtai, A Bardea, I Willner, H K Rau, W Haehnel
Integrated bioelectrocatalytically active electrodes are assembled by the deposition of enzymes onto respective electrically contacted affinity matrices and further cross-linking of the enzyme monolayers. A catalyst-NAD(+)-dyad for the binding of the NAD(+)-dependent enzymes and cytochrome-like molecules for the binding of the heme-protein-dependent enzymes are used to construct integrated electrically contacted biocatalytic systems. NAD(+)-dependent lactate dehydrogenase (LDH) is assembled onto a pyrroloquinoline quinone-NAD+ monolayer...
October 1, 1998: Biosensors & Bioelectronics
A Curulli, I Carelli, O Trischitta, G Palleschi
Pt, Au and graphite electrodes have been coated by electropolymerization of 1,2-, 1,3-, 1,4-diaminobenzene (DAB) and 4-aminobiphenyl in the presence of PQQ using cyclic voltammetry. The activity of the modified electrodes for the oxidation of paracetamol, ascorbic and uric acid was reduced by approximately 90% as compared to the bare electrodes. Polymerization in the presence 4,5-dihydro-4,5-dioxo-1H-pyrrolo(2,3-f)quinoline-2,7,9-tricarboxilic+ ++ acid, pyrroloquinolinequinone (PQQ) led, after optimization, to electrodes capable of catalysing the electrooxidation of beta-nicotinamide adenine dinucleotide, reduced form (NADH), in the range 10(-4)-10(-2) mol/l with a detection limit of 5 x 10(-5) mol/l...
1997: Biosensors & Bioelectronics
G P Hardy, M J Teixeira de Mattos, O M Neijssel
When grown in carbon source-limited chemostat cultures with lactate or glucose as the carbon and energy source and xylose as an additional source of reducing equivalents. Pseudomonas putida NCTC 10936 oxidized xylose to xylonolactone and xylonate. No other products were formed from this pentose, nor was it incorporated into biomass. The presence of xylose in these cultures resulted in higher Yglucose and Ylactate values as compared to cultures without xylose indicating that biologically useful energy was conserved during the periplasmic oxidation of xylose...
February 15, 1993: FEMS Microbiology Letters
Fetch more papers »
Fetching more papers... Fetching...
Read by QxMD. Sign in or create an account to discover new knowledge that matter to you.
Remove bar
Read by QxMD icon Read

Search Tips

Use Boolean operators: AND/OR

diabetic AND foot
diabetes OR diabetic

Exclude a word using the 'minus' sign

Virchow -triad

Use Parentheses

water AND (cup OR glass)

Add an asterisk (*) at end of a word to include word stems

Neuro* will search for Neurology, Neuroscientist, Neurological, and so on

Use quotes to search for an exact phrase

"primary prevention of cancer"
(heart or cardiac or cardio*) AND arrest -"American Heart Association"