Read by QxMD icon Read

PQQ AND Vitamin D

Ye Li, Xue Li, Yixuan Zhang
2-keto-L-gulonate (2-KGA) is the key intermediate of vitamin C, which can be biosynthesized by Ketogulonigenium vulgare. There are five reactions related to 2-KGA metabolism, including: (1) Oxidation of D-sorbitol to L-sorbose; (2) Oxidation of L-sorbose to L-sorbosone; (3) Oxidation of L-sorbosone (Pyranose form) to 2-KGA; (4) Oxidation of L-sorbosone (Furanose form) to vitamin C, and (5) Reduction of 2-KGA to L-idonate. L-sorbose/L-sorbosone dehydrogenase (SSDH) is responsible for the reaction of 1 through 3, L-sorbose dehydrogenase (SDH) is responsible for the reaction of 2 and 3, L-sorbosone dehydrogenase (SNDH) is responsible for the reaction of 3 and 4, aldehyde dehydrogenase (ALDH) is responsible for the reaction of 3, 2-KGA reductase (2-KGR) is responsible for the reaction of 5...
October 4, 2014: Wei Sheng Wu Xue Bao, Acta Microbiologica Sinica
Lili Gao, Yudong Hu, Jie Liu, Guocheng Du, Jingwen Zhou, Jian Chen
2-Keto-L-gulonic acid (2-KLG), the direct precursor of vitamin C, is currently produced by a two-step fermentation route from D-sorbitol. However, this route involves three bacteria, making the mix-culture system complicated and redundant. Thus, replacement of the conventional two-step fermentation process with a one-step process could be revolutionary in vitamin C industry. In this study, different combinations of five L-sorbose dehydrogenases (SDH) and two L-sorbosone dehydrogenases (SNDH) from Ketogulonicigenium vulgare WSH-001 were introduced into Gluconobacter oxydans WSH-003, an industrial strain used for the conversion of d-sorbitol to L-sorbose...
July 2014: Metabolic Engineering
Xue-Peng Yang, Gui-Fang Zhong, Jin-Ping Lin, Duo-Bin Mao, Dong-Zhi Wei
We have expressed the pqqABCDE gene cluster from Gluconobacter oxydans, which is involved in pyrroloquinoline quinone (PQQ) biosynthesis, in Escherichia coli, resulting in PQQ accumulation in the medium. Since the gene cluster does not include the tldD gene needed for PQQ production, this result suggests that the E. coli tldD gene, which shows high homology to the G. oxydans tldD gene, carries out that function. The synthesis of PQQ activated d-glucose dehydrogenase in E. coli and the growth of the recombinant was improved...
June 2010: Journal of Industrial Microbiology & Biotechnology
K A Bauerly, D H Storms, C B Harris, S Hajizadeh, M Y Sun, C P Cheung, M A Satre, A J Fascetti, E Tchaparian, R B Rucker
Pyrroloquinoline quinone (PQQ) added to purified diets devoid of PQQ improves indices of perinatal development in rats and mice. Herein, PQQ nutritional status and lysine metabolism are described, prompted by a report that PQQ functions as a vitamin-like enzymatic cofactor important in lysine metabolism (Nature 422 [2003] 832). Alternatively, we propose that PQQ influences lysine metabolism, but by mechanisms that more likely involve changes in mitochondrial content. PQQ deprivation in both rats and mice resulted in a decrease in mitochondrial content...
November 2006: Biochimica et Biophysica Acta
J A Duine
About twenty years ago, the cofactor pyrroloquinoline quinone, PQQ, was discovered. Here the author gives his personal view on the reasons why this cofactor was so lately discovered and how the steps in its identification were made. The discovery not only led to subsequent studies on the physiological significance of PQQ but also initiated investigations on other enzymes where the presence of PQQ was expected, resulting in the discovery of three other quinone cofactors, TPQ, TTQ, and LTQ, which differ from PQQ as they are part of the protein chain of the enzyme to which they belong...
1999: Journal of Bioscience and Bioengineering
David M D Fouchard, L M V Tillekeratne, Richard A Hudson
Parallel syntheses of 2-hydro-, 2-methyl-, and 2-methoxycarbonylimidazo-7,9-dimethoxycarbonyl analogues of the oxidation-reduction cofactor pyrroloquinoline quinone [4,5-dihydro-4,5-dioxo-1H-pyrrolo[2,3-f]quinoline-2,7,9-tricarboxylic acid] have been developed. The properties of the imidazolo analogues in relation to the corresponding pyrrole analogues will be important in assessing the origins of catalysis and biological activity in the cofactor, which has recently been shown to be a vitamin.
April 2, 2004: Journal of Organic Chemistry
Tatsuo Hoshino, Teruhide Sugisawa, Masako Shinjoh, Noribumi Tomiyama, Taro Miyazaki
Gluconobacter strains effectively produce L-sorbose from D-sorbitol because of strong activity of the D-sorbitol dehydrogenase (SLDH). L-sorbose is one of the important intermediates in the industrial vitamin C production process. Two kinds of membrane-bound SLDHs, which consist of three subunits, were reportedly found in Gluconobacter strains [Agric. Biol. Chem. 46 (1982) 135,FEMS Microbiol. Lett. 125 (1995) 45]. We purified a one-subunit-type SLDH (80 kDa) from the membrane fraction of Gluconobacter suboxydans IFO 3255 solubilized with Triton X-100 in the presence of D-sorbitol, but the cofactor could not be identified from the purified enzyme...
April 11, 2003: Biochimica et Biophysica Acta
A Bishop, P M Gallop, M L Karnovsky
Pyrroloquinoline quinone (PQQ), otherwise known as methoxatin, is a water-soluble, redox-cycling orthoquinone that was initially isolated from cultures of methylotropic bacteria. It has been found to be a cofactor of some bacterial alcohol dehydrogenases, and is present in many animal tissues. It may be a novel vitamin because it has been shown to be essential for normal growth and development. The redox-cycling ability of PQQ enables it to scavenge or generate superoxide. When fed to animals as a supplement, PQQ prevents oxidative changes that would ordinarily occur...
October 1998: Nutrition Reviews
W S McIntire
Research spurred by the discovery of pyrroloquinoline quinone (PPQ) in 1979 led to the discovery of four additional oxidation-reduction (redox) cofactors, all of which result from transmogrification of amino acyl side chains in respective enzymes. These cofactors are (a) topa quinone in copper-containing amine oxidases, enzymes found in nearly all forms of life, including human; (b) lysyl topa quinone of the copper protein lysyl oxidase, an enzyme required for proper cross-linking of collagen and elastin; (c) tryptophan tryptophylquinone of alkylamine dehydrogenases from gram-negative soil bacteria; and (d) the copper-complexed cysteinyltyrosyl radical of fungal galactose oxidase...
1998: Annual Review of Nutrition
J Killgore, C Smidt, L Duich, N Romero-Chapman, D Tinker, K Reiser, M Melko, D Hyde, R B Rucker
Mice fed a chemically defined diet devoid of pyrroloquinoline quinone (PQQ) grew poorly, failed to reproduce, and became osteolathyritic. Moreover, severely affected mice had friable skin, skin collagen that was readily extractable into neutral salt solutions, and decreased lysyl oxidase. The identification of functional defects in connective tissue and the growth retardation associated with PQQ deprivation suggest that PQQ plays a fundamental role as a growth factor or vitamin.
August 25, 1989: Science
Fetch more papers »
Fetching more papers... Fetching...
Read by QxMD. Sign in or create an account to discover new knowledge that matter to you.
Remove bar
Read by QxMD icon Read

Search Tips

Use Boolean operators: AND/OR

diabetic AND foot
diabetes OR diabetic

Exclude a word using the 'minus' sign

Virchow -triad

Use Parentheses

water AND (cup OR glass)

Add an asterisk (*) at end of a word to include word stems

Neuro* will search for Neurology, Neuroscientist, Neurological, and so on

Use quotes to search for an exact phrase

"primary prevention of cancer"
(heart or cardiac or cardio*) AND arrest -"American Heart Association"