Read by QxMD icon Read

Xenon anesthetic gas

Benjamin W Roose, Serge D Zemerov, Ivan J Dmochowski
The physiological activity of xenon has long been recognized, though the exact nature of its interactions with biomolecules remains poorly understood. Xe is an inert noble gas, but can act as a general anesthetic, most likely by binding internal hydrophobic cavities within proteins. Understanding Xe-protein interactions, therefore, can provide crucial insight regarding the mechanism of Xe anesthesia and potentially other general anesthetic agents. Historically, Xe-protein interactions have been studied primarily through X-ray crystallography and nuclear magnetic resonance (NMR)...
2018: Methods in Enzymology
Zhu-Wei Zhang, Dong-Ping Zhang, Hai-Ying Li, Zhong Wang, Gang Chen
Stroke that is caused by poor blood flow into the brain results in cell death, including ischemia stroke due to lack of blood into brain tissue, and hemorrhage due to bleeding. Both of them will give rise to the dysfunction of brain. In general, the signs and symptoms of stroke are the inability of feeling or moving on one side of body, sometimes loss of vision to one side. Above symptoms will appear soon after the stroke has happened. If the symptoms and signs happen in 1 or 2 hours, we often call them as transient ischemic attack...
October 2017: Medical Gas Research
Anna Rylova, Mervyn Maze
Xenon possesses some, but not all, of the clinical features of an ideal anesthetic agent. Besides well-known advantages of rapid awakening, stable hemodynamics and lack of biotransformation, preclinical data lead to the expectation of xenon's advantageous use for settings of acute ongoing brain injury; a single randomized clinical trial using an imaging biomarker for assessing brain injury corroborated xenon's preclinical efficacy in protecting the brain from further injury. In this review, we discuss the mechanisms and hence the putative applications of xenon for brain protection in neurosurgery...
February 21, 2018: Journal of Neurosurgical Anesthesiology
Sameh K Elsaidi, Daniele Ongari, Wenqian Xu, Mona H Mohamed, Maciej Haranczyk, Praveen K Thallapally
Xenon is known to be a very efficient anesthetic gas, but its cost prohibits the wider use in medical industry and other potential applications. It has been shown that Xe recovery and recycling from anesthetic gas mixtures can significantly reduce its cost as anesthetic. The current technology uses series of adsorbent columns followed by low-temperature distillation to recover Xe; this method is expensive to use in medical facilities. Herein, we propose a much simpler and more efficient system to recover and recycle Xe from exhaled anesthetic gas mixtures at room temperature using metal-organic frameworks (MOFs)...
August 10, 2017: Chemistry: a European Journal
M L Kukushkin, S I Igon'kina, S V Potapov, A V Potapov
The analgesic effects of inert gas xenon were examined on rats. The formalin model of inflammatory pain, tail-flick test, and hot-plate test revealed the antinociceptive effects of subanesthetizing doses of inhalation anesthetic xenon. Inhalation of 50/50 xenon/oxygen mixture moderated the nociceptive responses during acute and tonic phases of inflammatory pain.
February 2017: Bulletin of Experimental Biology and Medicine
Azeem Alam, Ka Chun Suen, Zac Hana, Robert D Sanders, Mervyn Maze, Daqing Ma
Growing and consistent preclinical evidence, combined with early clinical epidemiological observations, suggest potentially neurotoxic effects of commonly used anesthetic agents in the developing brain. This has prompted the FDA to issue a safety warning for all sedatives and anesthetics approved for use in children under three years of age. Recent studies have identified dexmedetomidine, the potent α2-adrenoceptor agonist, and xenon, the noble gas, as effective anesthetic adjuvants that are both less neurotoxic to the developing brain, and also possess neuroprotective properties in neonatal and other settings of acute ongoing neurologic injury...
March 2017: Neurotoxicology and Teratology
Laura L Walkup, Robert P Thomen, Teckla G Akinyi, Erin Watters, Kai Ruppert, John P Clancy, Jason C Woods, Zackary I Cleveland
BACKGROUND: Hyperpolarized (129)Xe is a promising contrast agent for MRI of pediatric lung function, but its safety and tolerability in children have not been rigorously assessed. OBJECTIVE: To assess the feasibility, safety and tolerability of hyperpolarized (129)Xe gas as an inhaled contrast agent for pediatric pulmonary MRI in healthy control subjects and in children with cystic fibrosis. MATERIALS AND METHODS: Seventeen healthy control subjects (ages 6-15 years, 11 boys) and 11 children with cystic fibrosis (ages 8-16 years, 4 boys) underwent (129)Xe MRI, receiving up to three doses of (129)Xe gas prepared by either a commercially available or a homebuilt (129)Xe polarizer...
November 2016: Pediatric Radiology
Hemmen Sabir, Damjan Osredkar, Elke Maes, Thomas Wood, Marianne Thoresen
BACKGROUND: Therapeutic hypothermia (TH) is standard treatment following perinatal asphyxia in newborn infants. Experimentally, TH is neuroprotective after moderate hypoxia-ischemia (HI) in seven-day-old (P7) rats. However, TH is not neuroprotective after severe HI. After a moderate HI insult in newborn brain injury models, the anesthetic gas xenon (Xe) doubles TH neuroprotection. The aim of this study was to examine whether combining Xe and TH is neuroprotective as applied in a P7 rat model of severe HI...
2016: PloS One
Ludovic Deliere, Benoit Coasne, Sylvain Topin, Claire Gréau, Christophe Moulin, David Farrusseng
Rare gas capture and purification is a major challenge for energy, environment, and health applications. Of utmost importance for the nuclear industry, novel separation processes for Xe are urgently needed for spent nuclear fuel reprocessing and nuclear activity monitoring. The recovered, non-radioactive Xe is also of high economic value for lighting, surgical anesthetic, etc. Here, using adsorption and breakthrough experiments and statistical mechanics molecular simulation, we show the outstanding performance of zeolite-supported silver nanoparticles to capture/separate Xe at low concentrations (0...
July 4, 2016: Chemistry: a European Journal
Christian Stoppe, Julia Ney, Martin Brenke, Andreas Goetzenich, Christoph Emontzpohl, Gereon Schälte, Oliver Grottke, Manfred Moeller, Rolf Rossaint, Mark Coburn
BACKGROUND: The licensed anesthetic xenon, which exerts organ protective properties, was recently added by the World Anti-Doping Agency to the list of prohibited substances. Xenon is supposed to trigger the production of hypoxia-inducible factor 1α (HIF-1α) and subsequently erythropoietin, but data are limited to in vivo experimental work. Therefore we evaluated the effect of xenon on erythropoietin levels in healthy persons. METHODS: Twenty-four healthy volunteers were randomly assigned either to a group spontaneously breathing xenon 30 % (Xe/O2 30 %/60 %) or a group breathing control gas (N2/O2 40 %/60 %) for 45 min...
November 2016: Sports Medicine
Camille Tassel, Brendan Le Daré, Isabelle Morel, Thomas Gicquel
Doping is defined as the use of processes or substances to artificially increase physical or mental performance. Xenon is a noble gas used as an anesthetic and recently as a doping agent. Xenon is neuroprotective as an antagonist of NMDA glutamate receptors. Xenon stimulates the synthesis of erythropoietin (EPO) by increase of hypoxia inducible factor (HIF). Xenon would be a new doping product, maintaining doping methods ahead of detection.
April 2016: La Presse Médicale
J H Philip
Screen-based simulation can improve patient care by giving novices and experienced clinicians insight into drug behaviour. Gas Man(®) is a screen-based simulation program that depicts pictorially and graphically the anaesthetic gas and vapour tension from the vaporizer to the site of action, namely the brain and spinal cord. The gases and vapours depicted are desflurane, enflurane, ether, halothane, isoflurane, nitrogen, nitrous oxide, sevoflurane, and xenon. Multiple agents can be administered simultaneously or individually and the results shown on an overlay graph...
December 2015: British Journal of Anaesthesia
Kentaro Nogami, Shogo Taniguchi
PURPOSE: The aim of this study was to evaluate the relative effectiveness of stellate ganglion blockade (SGB) versus xenon light irradiation (XLI) for the treatment of neurosensory deficits resulting from orthognathic surgery as determined by a comparison of prospective measurements of electrical current perception thresholds (CPTs) and ranged CPTs (R-CPTs). MATERIALS AND METHODS: CPT and R-CPT in the mental foramen area were measured during electrical stimulation at 98 different sites on the body in patients who had undergone orthognathic surgery...
July 2015: Journal of Oral and Maxillofacial Surgery
Hina Gadani, Arun Vyas
Global warming refers to an average increase in the earth's temperature, which in turn causes changes in climate. A warmer earth may lead to changes in rainfall patterns, a rise in sea level, and a wide range of impacts on plants, wildlife, and humans. Greenhouse gases make the earth warmer by trapping energy inside the atmosphere. Greenhouse gases are any gas that absorbs infrared radiation in the atmosphere and include: water vapor, carbon dioxide (CO2), methane (CH4), nitrous oxide (N2O), halogenated fluorocarbons (HCFCs), ozone (O3), perfluorinated carbons (PFCs), and hydrofluorocarbons (HFCs)...
January 2011: Anesthesia, Essays and Researches
Yevgeny Moskovitz, Hui Yang
Our objective was to study molecular processes that might be responsible for inert gas narcosis and high-pressure nervous syndrome. The classical molecular dynamics trajectories (200 ns) of dioleoylphosphatidylcholine (DOPC) bilayers simulated by the Berger force field were evaluated for water and the atomic distribution of noble gases around DOPC molecules in the pressure range of 1-1000 bar and at a temperature of 310 K. Xenon and argon have been tested as model gases for general anaesthetics, and neon has been investigated for distortions that are potentially responsible for neurological tremors in hyperbaric conditions...
March 21, 2015: Soft Matter
Nina C Weber, Kirsten F Smit, Markus W Hollmann, Benedikt Preckel
Research data from the past decade indicate that noble gases like xenon and helium exert profound cardioprotection when applied before, during or after organ ischemia. Of all noble gases, especially helium, has gained interest in the past years because it does not have an anesthetic "side effect" like xenon, allowing application of this specific gas in numerous clinical ischemia/reperfusion situations. Because helium has several unique characteristics and no hemodynamic side effects, helium could be administered in severely ill patients...
2015: Current Drug Targets
S Strengell, J Keyriläinen, P Suortti, S Bayat, A R A Sovijärvi, L Porra
K-edge subtraction computed tomography (KES-CT) allows simultaneous imaging of both structural features and regional distribution of contrast elements inside an organ. Using this technique, regional lung ventilation and blood volume distributions can be measured experimentally in vivo. In order for this imaging technology to be applicable in humans, it is crucial to minimize exposure to ionizing radiation with little compromise in image quality. The goal of this study was to assess the changes in signal-to-noise ratio (SNR) of KES-CT lung images as a function of radiation dose...
November 2014: Journal of Synchrotron Radiation
Arne Mathias Ruder, Michaela Schmidt, Alessia Ludiro, Marco A Riva, Peter Gass
Carrying out invasive procedures in animals requires the administration of anesthesia. Xenon gas offers advantages as an anesthetic agent compared with other agents, such as its protection of the brain and heart from hypoxia-induced damage. The high cost of xenon gas has limited its use as an anesthetic in animal experiments, however. The authors designed and constructed simple boxes for the induction and maintenance of xenon gas and isoflurane anesthesia in small rodents in order to minimize the amount of xenon gas that is wasted...
November 2014: Lab Animal
Jacques H Abraini, Guillaume Marassio, Helene N David, Beatrice Vallone, Thierry Prangé, Nathalie Colloc'h
BACKGROUND: The mechanisms by which general anesthetics, including xenon and nitrous oxide, act are only beginning to be discovered. However, structural approaches revealed weak but specific protein-gas interactions. METHODS: To improve knowledge, we performed x-ray crystallography studies under xenon and nitrous oxide pressure in a series of 10 binding sites within four proteins. RESULTS: Whatever the pressure, we show (1) hydrophobicity of the gas binding sites has a screening effect on xenon and nitrous oxide binding, with a threshold value of 83% beyond which and below which xenon and nitrous oxide, respectively, binds to their sites preferentially compared to each other; (2) xenon and nitrous oxide occupancies are significantly correlated respectively to the product and the ratio of hydrophobicity by volume, indicating that hydrophobicity and volume are binding parameters that complement and oppose each other's effects; and (3) the ratio of occupancy of xenon to nitrous oxide is significantly correlated to hydrophobicity of their binding sites...
November 2014: Anesthesiology
S A Ash, G I Valchev, M Looney, A Ni Mhathuna, P D Crowley, H C Gallagher, D J Buggy
BACKGROUND: While volatile agents have been implicated in metastasis-enhancing effects on cancer cells, the effects of xenon are unknown. We investigated xenon- and sevoflurane-mediated effects on migration and expression of angiogenesis biomarkers in human breast adenocarcinoma cells. METHODS: MDA-MB-231 and MCF-7 cells were exposed to xenon 70% with O2 25%, CO2 5%; control gas containing O2 25%, CO2 5%, N2 70%; or sevoflurane 2.5 vol% administered in O2 60%, N2 37%, or control gas...
July 2014: British Journal of Anaesthesia
Fetch more papers »
Fetching more papers... Fetching...
Read by QxMD. Sign in or create an account to discover new knowledge that matter to you.
Remove bar
Read by QxMD icon Read

Search Tips

Use Boolean operators: AND/OR

diabetic AND foot
diabetes OR diabetic

Exclude a word using the 'minus' sign

Virchow -triad

Use Parentheses

water AND (cup OR glass)

Add an asterisk (*) at end of a word to include word stems

Neuro* will search for Neurology, Neuroscientist, Neurological, and so on

Use quotes to search for an exact phrase

"primary prevention of cancer"
(heart or cardiac or cardio*) AND arrest -"American Heart Association"