Read by QxMD icon Read


Jinjie Qian, Qipeng Li, Linfeng Liang, Ting-Ting Li, Yue Hu, Shaoming Huang
A robust indium-organic framework (InOF-15) with open metal sites and Lewis basic sites has been successfully synthesized using a quinoline-based dicarboxylic acid. Moreover, it exhibits high IAST selective CO2 sorption from CO2/CH4 and CO2/N2 mixtures at 273 K, which has been attributed to the coexistence of OMSs and LBSs with strong synergistic effects.
October 12, 2017: Dalton Transactions: An International Journal of Inorganic Chemistry
Andrey A Bezrukov, Pascal D C Dietzel
The metal-organic framework [Y(tbpp)]·nDMF (1) was synthesized from yttrium(III) nitrate and the tritopic linker tris(4'-carboxy[1,1'-biphenyl]-4-yl)phosphine (H3tbpp). The distance between the coordinating atoms of the carboxylate groups of the extended tridentate phosphine linker is more than 1.8 nm, resulting in an average pore dimension of 0.9 nm in the noninterpenetrated metal-organic framework. The material exhibits high thermal stability and permanent porosity after removal of guest molecules from the one-dimensional pore system...
October 9, 2017: Inorganic Chemistry
Quan-Li Ke, Tian-Jun Sun, Xiao-Li Wei, Ya Guo, Shu-Dong Wang
In this paper, boron and copper heteroatoms were successfully incorporated into the frameworks of high-silica RHO zeolite by adopting a bulky alkali metal-crown ether (AMCE) complex as the template. As a consequence, these heteroatom-doped zeolites show both larger micropore surface areas and volumes than those of their aluminosilicate analogue. Proton-type RHO zeolites were then applied for separation of CO2 / CH4 / N2 mixtures so as to weaken the electric field of these zeolites and then decrease the adsorption heat...
September 12, 2017: ChemSusChem
Bing Liu, Shuo Yao, Xinyao Liu, Xu Li, Rajamani Krishna, Guanghua Li, Qisheng Huo, Yunling Liu
By means of modulating the axial ligand and adopting supermolecular building blocks (SBBs) strategy, two polyhedron-based metal-organic frameworks (PMOFs) have been successfully synthesized [Cu6(C17O9N2H8)3(C6H12N2)(H2O)2(DMF)2]·3DMF·8H2O (JLU-Liu46) and [Cu6(C17O9N2H8)3(C4H4N2)(H2O)2(DMF)2]·3DMF·8H2O (JLU-Liu47), which possess a high density of Lewis basic sites (LBSs) and open metal sites (OMSs). Since the size of axial ligand in JLU-Liu47 is smaller than that in JLU-Liu46, JLU-Liu47 shows larger pore volume and higher BET surface area...
September 27, 2017: ACS Applied Materials & Interfaces
Xu-Jia Hong, Qin Wei, Yue-Peng Cai, Bing-Bing Wu, Hai-Xing Feng, Ying Yu, Ren-Feng Dong
The removal of acetylene from the industrial feed gas to purify the ethylene is an important and challenging issue. The adsorption-based separation is a more environmentally friendly and cost-effective method compared to the current removal approaches such as partial hydrogenation and solvent extraction, while facing the challenge of developing materials with high C2H2/C2H4 selectivity and C2H2 capacity. Herein, by expanding mixed-metal organic frameworks (M'MOFs) structure with high C2H2/C2H4 selectivity, we report a pillar-layered MOF, {[Cd5(MPCZ)2(BDC)3(NO3)2(H2O)4]·G}n (MECS-5), which not only inherits the sieving effects of M'MOF series but also develops its own characteristic-the 2D layer with expanding space and the plane pore-partition group to "cover" it...
August 30, 2017: ACS Applied Materials & Interfaces
Jingjing Jiao, Donghao Jiang, Fengli Chen, Dongjie Bai, Yabing He
A new copper-based metal-organic framework [Cu2L(H2O)2]·5DMF·2H2O (ZJNU-56) has been solvothermally synthesized using a custom-designed asymmetric rigid bent diisophthalate ligand, 5,5'-(1-amine-naphthyl-2,4-diyl) diisophthalic acid (H4L), and structurally determined by single-crystal X-ray diffraction. ZJNU-56 features a three-dimensional (3D) open framework incorporating three different types of metal-organic cages and two distinct types of one-dimensional channels. With a moderate BET surface area of 1655 m(2) g(-1), optimized pore structure, and functional sites (open copper sites and Lewis basic amine groups) on the cage surface, ZJNU-56 after desolvation exhibits highly selectively adsorptive separation of C2H2 and CO2 over CH4 under ambient conditions...
June 8, 2017: Dalton Transactions: An International Journal of Inorganic Chemistry
Arpan Kundu, Kaido Sillar, Joachim Sauer
Gibbs free energies of adsorption on individual sites and the lateral (adsorbate-adsorbate) interaction energies are obtained from quantum chemical ab initio methods and molecular statistics. They define a Grand Canonical Monte Carlo (GCMC) Hamiltonian for simulations of gas mixtures on a lattice of adsorption sites. Coadsorption of CO2 and CH4 at Mg(2+) sites in the pores of the metal-organic framework CPO-27-Mg (Mg-MOF-74) is studied as an example. Simulations with different approximations as made in widely used coadsorption models such as the ideal adsorbed solution theory (IAST) show their limitations in describing adsorption selectivities for binary mixtures...
June 15, 2017: Journal of Physical Chemistry Letters
Nicole Arlt, Remo Rothe, Thomas Juretzek, Heidrun Peltroche, Torsten Tonn, Rainer Moog
BACKGROUND: Relatively slow-growing bacteria like Propionibacterium acnes represent a challenge for quality control investigations in sterility release testing of blood components and advanced therapeutic medicinal products (ATMPs). METHODS: A convenient validation with 7 matrices was performed using buffy coat, stem cells, islet cells, natural killer cells, red blood cells, platelets and plasma in the microbial detection system Bact/Alert(®)3D incubator. All matrix samples were spiked twofold with Propionibacterium acnes with approximately 50 colony forming units (CFUs) per bottle in iAST and iNST culture bottles for 14days using a multishot bioball...
May 19, 2017: Transfusion and Apheresis Science
Nian Zhao, Fuxing Sun, Ping Li, Xin Mu, Guangshan Zhu
A novel 3D porous metal organic framework, JUC-141, constructed by 5-aminoisophthalic acid and Cu(NO3)2, has been synthesized successfully. The carboxyl groups in the ligand coordinate to Cu(2+) to form the classic Cu2(COO)4 paddle wheel SBU, and the assembly of the SBUs with the isophthalic acid moieties leads to a kagome lattice. Interestingly, the amino groups in the ligand also take part in the coordination and link to the dipole of the paddle wheel as pillars, thus forming a 3D porous framework with eea topology...
May 31, 2017: Inorganic Chemistry
Huichun Zhang, Shubo Wang
A large number of organic contaminants are commonly found in industrial and municipal wastewaters. For proper unit design to remove contaminant mixtures by adsorption, multicomponent adsorption equilibrium models are necessary. The present work examined the applicability of Ideal Adsorbed Solution Theory (IAST), a prevailing thermodynamic model, and its derivatives, i.e., Segregated IAST (SIAST) and Real Adsorbed Solution Theory (RAST), to bisolute adsorption of organic compounds onto a hyper-cross-linked polystyrene resin, MN200...
May 8, 2017: Environmental Science & Technology
Kuanyu Yuan, Cheng Liu, Lishuai Zong, Guipeng Yu, Shengli Cheng, Jinyan Wang, Zhihuan Weng, Xigao Jian
Five porous ether-linked phthalazinone-based covalent triazine frameworks (PHCTFs) were successfully constructed via ionothermal polymerizations from flexible dicyano monomers containing asymmetric, twisted, and N-heterocyclic phthalazinone structure. All the building blocks could be easily prepared by simple and low-cost aromatic nucleophilic substitution reactions, showing the large-scale application potential of thermal stable phthalazinone structure in constructing porous materials. Generally, the flexible building blocks are avoided to prevent the networks from collapsing in constructing high surface area porous materials...
April 10, 2017: ACS Applied Materials & Interfaces
Dipendu Saha, Gerassimos Orkoulas, Samuel Yohannan, Hoi Chun Ho, Ercan Cakmak, Jihua Chen, Soydan Ozcan
In this work, nanoporous boron nitride sample was synthesized with a Brunauer-Emmett-Teller (BET) surface area of 1360 m(2)/g and particle size 5-7 μm. The boron nitride was characterized with X-ray photoelectron spectroscopy (XPS), X-ray diffraction (XRD), and electron microscopy (TEM and SEM). Thermogravimetric analysis (TGA) under nitrogen and air and subsequent analysis with XPS and XRD suggested that its structure is stable in air up to 800 °C and in nitrogen up to 1050 °C, which is higher than most of the common adsorbents reported so far...
April 11, 2017: ACS Applied Materials & Interfaces
Cheng-Xia Chen, Shao-Ping Zheng, Zhang-Wen Wei, Chen-Chen Cao, Hai-Ping Wang, Dawei Wang, Ji-Jun Jiang, Dieter Fenske, Cheng-Yong Su
A 3D porous perchlorinated metal-organic framework (MOF), LIFM-26, featuring dual functionality, that is, functional polar groups and open metal sites, has been synthesized using perchlorinated linear dicarboxylate to link trigonal prismatic Fe3 (μ3 -O) units. LIFM-26 exhibits good thermal and chemical stability, and possesses high porosity with a BET surface area of 1513 m(2)  g(-1) , compared with isoreticular MOF-235 and Fe3 O(F4 BDC)3 (H2 O)3 (F4 BDC=2,3,5,6-tetrafluorobenzene-1,4-dicarboxylate). Most strikingly, LIFM-26 features good gas sorption/separation performance at 298 K and 1 atm with IAST selectivity values reaching up to 36, 93, 23, 11, 46, and 202 for CO2 /CH4 , CO2 /N2 , C2 H4 /CH4 , C2 H6 /CH4 , C3 H8 /CH4 , and R22/N2 (R22=CHClF2 ), respectively, showing potential for use in biogas/natural gas purification and CO2 /R22 capture...
February 8, 2017: Chemistry: a European Journal
Kota S Subrahmanyam, Ioannis Spanopoulos, Jaehun Chun, Brian J Riley, Praveen K Thallapally, Pantelis N Trikalitis, Mercouri G Kanatzidis
High-surface-area molybdenum sulfide (MoSx) and antimony sulfide (SbSx) chalcogels were studied for Xe/Kr gas separation. The intrinsic soft Lewis basic character of the chalcogel framework is a unique property among the large family of porous materials and lends itself to a potential new approach toward the selective separation of Xe over Kr. Among these chalcogels, MoSx shows the highest Xe and Kr uptake, reaching 0.69 mmol g(-1) (1.05 mmol cm(-3)) and 0.28 mmol g(-1) (0.42 mmol cm(-3)) respectively, at 273 K and 1 bar...
October 4, 2017: ACS Applied Materials & Interfaces
Warisa Bunmahotama, Wei-Nung Hung, Tsair-Fuh Lin
A new model is developed to predict the competitive adsorption isotherms of atrazine, methyl tertiary butyl ether (MTBE), 2-methylisoborneol (2-MIB) and 2,4,6-trichlorophenol onto activated carbons (ACs) in natural water. Based on the Polanyi-Dubinin (PD) equation, with the limiting pore volume of adsorbent estimated from the pore size distribution data, and the Ideal adsorbed solution theory - equivalent background compound (IAST-EBC) model approximation, the model takes into account both the properties of ACs and the impact of natural organic matters in water...
March 15, 2017: Water Research
Jurn Heinen, Nicholas C Burtch, Krista S Walton, Célia Fonseca Guerra, David Dubbeldam
For the design of adsorptive-separation units, knowledge is required of the multicomponent adsorption behavior. Ideal adsorbed solution theory (IAST) breaks down for olefin adsorption in open-metal site (OMS) materials due to non-ideal donor-acceptor interactions. Using a density-function-theory-based energy decomposition scheme, we develop a physically justifiable classical force field that incorporates the missing orbital interactions using an appropriate functional form. Our first-principles derived force field shows greatly improved quantitative agreement with the inflection points, initial uptake, saturation capacity, and enthalpies of adsorption obtained from our in-house adsorption experiments...
December 12, 2016: Chemistry: a European Journal
Filipe Simões Teodoro, Oscar Fernando Herrera Adarme, Laurent Frédéric Gil, Leandro Vinícius Alves Gurgel
In the second part of this series of studies, the competitive adsorption of three binary systems Cu(2+)-Co(2+), Cu(2+)-Ni(2+) and Co(2+)-Ni(2+) on a carboxylated cellulose derivative (CTA) was evaluated in binary equimolar (1:1) metal-ion aqueous solutions. Bicomponent adsorption studies were developed as a function of contact time and initial metal ion concentration. Bicomponent adsorption kinetic data was modeled by monocomponent kinetic models of pseudo-first- (PFO) and pseudo-second-order (PSO) and a competitive kinetic model of Corsel...
February 1, 2017: Journal of Colloid and Interface Science
Seung-Joon Lee, Tae-Ung Yoon, Ah-Reum Kim, Seo-Yul Kim, Kyung-Ho Cho, Young Kyu Hwang, Jei-Won Yeon, Youn-Sang Bae
The separation of xenon/krypton mixtures is important for both environmental and industrial purposes. The potential of three hydrothermally stable MOFs (MIL-100(Fe), MIL-101(Cr), and UiO-66(Zr)) for use in Xe/Kr separation has been experimentally investigated. From the observed single-component Xe and Kr isotherms, isosteric heat of adsorption (Qst(o)), and IAST-predicted Xe/Kr selectivities, we observed that UiO-66(Zr) has the most potential as an adsorbent among the three candidate MOFs. We performed dynamic breakthrough experiments with an adsorption bed filled with UiO-66(Zr) to evaluate further the potential of UiO-66(Zr) for Xe/Kr separation under mixture flow conditions...
December 15, 2016: Journal of Hazardous Materials
Liping Liu, Jianyong Zhang, Haobin Fang, Liuping Chen, Cheng-Yong Su
Metal-organic frameworks (MOFs) including the UiO-66 series show potential application in the adsorption and conversion of CO2 . Herein, we report the first tetravalent metal-based metal-organic gels constructed from Zr(IV) and 2-aminoterephthalic acid (H2 BDC-NH2 ). The ZrBDC-NH2 gel materials are based on UiO-66-NH2 nanoparticles and were easily prepared under mild conditions (80 °C for 4.5 h). The ZrBDC-NH2 -1:1-0.2 gel material has a high surface area (up to 1040 m(2)  g(-1) ) and showed outstanding performance in CO2 adsorption (by using the dried material) and conversion (by using the wet gel) arising from the combined advantages of the gel and the UiO-66-NH2 MOF...
August 19, 2016: Chemistry, An Asian Journal
Selvan Demir, Nicholas K Brune, Jeffrey F Van Humbeck, Jarad A Mason, Tatiana V Plakhova, Shuao Wang, Guoxin Tian, Stefan G Minasian, Tolek Tyliszczak, Tsuyoshi Yaita, Tohru Kobayashi, Stepan N Kalmykov, Hideaki Shiwaku, David K Shuh, Jeffrey R Long
Porous aromatic frameworks (PAFs) incorporating a high concentration of acid functional groups possess characteristics that are promising for use in separating lanthanide and actinide metal ions, as required in the treatment of radioactive waste. These materials have been shown to be indefinitely stable to concentrated acids and bases, potentially allowing for multiple adsorption/stripping cycles. Additionally, the PAFs combine exceptional features from MOFs and inorganic/activated carbons giving rise to tunable pore surfaces and maximum chemical stability...
April 27, 2016: ACS Central Science
Fetch more papers »
Fetching more papers... Fetching...
Read by QxMD. Sign in or create an account to discover new knowledge that matter to you.
Remove bar
Read by QxMD icon Read

Search Tips

Use Boolean operators: AND/OR

diabetic AND foot
diabetes OR diabetic

Exclude a word using the 'minus' sign

Virchow -triad

Use Parentheses

water AND (cup OR glass)

Add an asterisk (*) at end of a word to include word stems

Neuro* will search for Neurology, Neuroscientist, Neurological, and so on

Use quotes to search for an exact phrase

"primary prevention of cancer"
(heart or cardiac or cardio*) AND arrest -"American Heart Association"