Read by QxMD icon Read

Cold stress plant

Alexander N Shikov, Olga N Pozharitskaya, Valery G Makarov
PURPOSE: Aralia elata var. mandshurica (Rupr. & Maxim.) J.Wen syn. A. mandshurica Rupr. & Maxim is evaluated for its medicinal application. The aim of this study is to analyze pharmacological studies on A. elata var. mandshurica published until December 2015. METHODS: The information regarding the chemistry, safety, effectiveness, and pharmacological and clinical effects of A. elata was systematically collected from the scientific literature through library catalogs; online services such as E-library...
November 15, 2016: Phytomedicine: International Journal of Phytotherapy and Phytopharmacology
Luis Figueroa-Yañez, Alejandro Pereira-Santana, Ana Arroyo-Herrera, Ulises Rodriguez-Corona, Felipe Sanchez-Teyer, Jorge Espadas-Alcocer, Francisco Espadas-Gil, Felipe Barredo-Pool, Enrique Castaño, Luis Carlos Rodriguez-Zapata
Plants respond to stress through metabolic and morphological changes that increase their ability to survive and grow. To this end, several transcription factor families are responsible for transmitting the signals that are required for these changes. Here, we studied the transcription factor superfamily AP2/ERF, particularly, RAP2.4 from Carica papaya cv. Maradol. We isolated four genes (CpRap2.4a, CpRAap2.4b, CpRap2.1 and CpRap2.10), and an in silico analysis showed that the four genes encode proteins that contain a conserved APETALA2 (AP2) domain located within group I and II transcription factors of the AP2/ERF superfamily...
2016: PloS One
Bin Cai, Xiangxiong Kong, Chao Zhong, Suli Sun, Xiao Feng Zhou, Yin Hua Jin, Youning Wang, Xia Li, Zhendong Zhu, Jing Bo Jin
SIZ1 is a small ubiquitin-related modifier (SUMO) E3 ligase that mediates post-translational SUMO modification of target proteins and thereby regulates developmental processes and hormonal and environmental stress responses in Arabidopsis. However, the role of SUMO E3 ligases in crop plants is largely unknown. Here, we identified and characterized two Glycine max (soybean) SUMO E3 ligases, GmSIZ1a and GmSIZ1b. Expression of GmSIZ1a and GmSIZ1b was induced in response to salicylic acid (SA), heat, and dehydration treatment, but not in response to cold, ABA, and NaCl treatment...
October 20, 2016: Journal of Integrative Plant Biology
Caiyun He, Guori Gao, Jianguo Zhang, Aiguo Duan, Hongmei Luo
BACKGROUND: Low temperature is one of the crucial environmental factors limiting the productivity and distribution of plants. Sea buckthorn (Hippophae rhamnoides L.), a well recognized multipurpose plant species, live successfully in in cold desert regions. But their molecular mechanisms underlying cold tolerance are not well understood. METHODS: Physiological and biochemical responses to low-temperature stress were studied in seedlings of sea buckthorn. Differentially expressed protein spots were analyzed using multiplexing fluorescent two-dimensional fluorescence difference gel electrophoresis (2D-DIGE) coupled with matrix-assisted laser desorption/ionization (MALDI) time-of-flight/time-of-flight (TOF/TOF) mass spectrometry (MS), the concentration of phytohormone was measured using enzyme-linked immunosorbent assay, and a spectrophotometric assay was used to measure enzymatic reactions...
2016: Proteome Science
Meng-Yao Li, Xiong Song, Feng Wang, Ai-Sheng Xiong
Parsley, one of the most important vegetables in the Apiaceae family, is widely used in the food, medicinal, and cosmetic industries. Recent studies on parsley mainly focus on its chemical composition, and further research involving the analysis of the plant's gene functions and expressions is required. qPCR is a powerful method for detecting very low quantities of target transcript levels and is widely used to study gene expression. To ensure the accuracy of results, a suitable reference gene is necessary for expression normalization...
2016: Frontiers in Plant Science
Justine Karst, Jacob Gaster, Erin Wiley, Simon M Landhäusser
How carbon (C) flows through plants into soils is poorly understood. Carbon exuded comes from a pool of non-structural carbohydrates (NSC) in roots. Simple models of diffusion across concentration gradients indicate that the more C in roots, the more C should be exuded from roots. However, the mechanisms underlying the accumulation and loss of C from roots may differ depending on the stress experienced by plants. Thus, stress type may influence exudation independent of NSC. We tested this hypothesis by examining the relationship between NSC in fine roots and exudation of organic C in aspen (Populus tremuloides Michx...
October 15, 2016: Tree Physiology
Weiwei Li, Ming Chen, Erhui Wang, Liqin Hu, Malcolm J Hawkesford, Li Zhong, Zhu Chen, Zhaoshi Xu, Liancheng Li, Yongbin Zhou, Changhong Guo, Youzhi Ma
BACKGROUND: Autophagy is a cellular degradation process that is highly evolutionarily-conserved in yeast, plants, and animals. In plants, autophagy plays important roles in regulating intracellular degradation and recycling of amino acids in response to nutrient starvation, senescence, and other environmental stresses. Foxtail millet (Setaria italica) has strong resistance to stresses and has been proposed as an ideal material for use in the study of the physiological mechanisms of abiotic stress tolerance in plants...
October 12, 2016: BMC Genomics
Van N T Nguyen, Kieu T X Vo, Hyon Park, Jong-Seong Jeon, Ki-Hong Jung
The Mildew resistance Locus O (MLO) family is unique to plants, containing genes that were initially identified as a susceptibility factor to powdery mildew pathogens. However, little is known about the roles and functional diversity of this family in rice, a model crop plant. The rice genome has 12 potential MLO family members. To achieve systematic functional assignments, we performed a phylogenomic analysis by integrating meta-expression data obtained from public sources of microarray data and real-time expression data into a phylogenic tree...
2016: Frontiers in Plant Science
Sylvia Bolt, Ellen Zuther, Stefanie Zintl, Dirk K Hincha, Thomas Schmülling
Tolerance of and acclimation to low temperatures are important for plant performance. Transcriptional regulation is part of the plant´s response to low temperatures but only a portion of the relevant transcription factors are known. In this work, we report the characterization of a transcription factor, ETHYLENE RESPONSE FACTOR105 (ERF105), which has a particularly relevant function in the cold stress response. Expression analyses revealed that ERF105 is early and transiently upregulated by cold. In electrolyte leakage and plant survival tests, loss-of-function and gain-of-function (overexpressing) plants of ERF105 showed reduced and enhanced freezing tolerance, respectively...
October 10, 2016: Plant, Cell & Environment
Xiang He, Lihua Li, Hong Xu, Jiang Xi, Xufeng Cao, Haoran Xu, Songhao Rong, Yilun Dong, Chuan Wang, Rongjun Chen, Jinghong Xu, Xiaoling Gao, Zhengjun Xu
Abiotic stresses have a significant impact on plant productivity and crop quality. Although plant lectins are thought to play important roles in plant defense signaling during pathogen attack, little is known about the contribution of plant lectins to stress resistance. We cloned and functionally characterized a rice jacalin-related mannose-binding lectin gene, OsJRL, from rice 'Nipponbare'. The cDNA of OsJRL contained a 438 bp open reading frame, which encodes a polypeptide of 145 amino acids. OsJRL was localized in the nucleus and cytoplasm...
October 8, 2016: Plant Biology
Hongping Chang, Dandan Chen, Jason Kam, Terese Richardson, Janneke Drenth, Xinhong Guo, C Lynne McIntyre, Shoucheng Chai, Anne L Rae, Gang-Ping Xue
Q-type C2H2 zinc finger proteins (ZFPs) are plant-specific DNA-binding proteins containing a conserved QALGGH motif. This study investigated the function of abiotic stress-inducible and predominantly root-expressed Triticum aestivum ZFPs (TaZFP22, TaZFP34 and TaZFP46) with a focus on TaZFP34. Expression of TaZFP34 in roots was upregulated by high salinity, dehydration, oxidative and cold stresses. Overexpression of TaZFP34 in wheat roots resulted in an increased root-to-shoot ratio, a phenomenon observed during plant adaptation to drying soil...
November 2016: Plant Science: An International Journal of Experimental Plant Biology
Haihong Jia, Lili Hao, Xulei Guo, Shuchang Liu, Yan Yan, Xingqi Guo
Mitogen-activated protein kinase kinase kinases (MAPKKKs) function at the top level of MAPK cascades and play important roles in plant development and stress responses. Although MAPKKKs comprise the largest family in the MAPK cascades, very few Raf-like MAPKKKs have been functionally identified, especially in the economically important crop cotton. In this study, a Raf-like MAPKKK gene, GhRaf19, was characterized for the first time in cotton. Our data show that the expression of GhRaf19 was inhibited by PEG and NaCl and induced by cold (4°C) and H2O2...
November 2016: Plant Science: An International Journal of Experimental Plant Biology
Laëtitia Riva-Roveda, Brigitte Escale, Catherine Giauffret, Claire Périlleux
BACKGROUND: European Flint maize inbred lines are used as a source of adaptation to cold in most breeding programs in Northern Europe. A deep understanding of their adaptation strategy could thus provide valuable clues for further improvement, which is required in the current context of climate change. We therefore compared six inbreds and two derived Flint x Dent hybrids for their response to one-week at low temperature (10 °C day/7 or 4 °C night) during steady-state vegetative growth...
October 4, 2016: BMC Plant Biology
Meiying Li, Licheng Ren, Biyu Xu, Xiaoliang Yang, Qiyu Xia, Pingping He, Susheng Xiao, Anping Guo, Wei Hu, Zhiqiang Jin
Plant 14-3-3 proteins act as critical components of various cellular signaling processes and play an important role in regulating multiple physiological processes. However, less information is known about the 14-3-3 gene family in banana. In this study, 25 14-3-3 genes were identified from the banana genome. Based on the evolutionary analysis, banana 14-3-3 proteins were clustered into ε and non-ε groups. Conserved motif analysis showed that all identified banana 14-3-3 genes had the typical 14-3-3 motif...
2016: Frontiers in Plant Science
Yuan Zhou, Yan Yang, Xinjian Zhou, Yingjun Chi, Baofang Fan, Zhixiang Chen
Proteins containing the FxxxVQxhTG or VQ motif interact with WRKY transcription factors. Although VQ proteins have been reported in several plants, knowledge about their structures, functions and evolution is still very limited. Here, we report structural and functional analysis of the VQ protein family from soybean. Like Arabidopsis homologues, soybean VQ proteins bind only Group I and IIc WRKY proteins and a substantial number of their genes are responsive to stress-associated phytohormones. Overexpression of some soybean VQ genes in Arabidopsis had strong effects on plant growth, development, disease resistance and heat tolerance...
October 6, 2016: Scientific Reports
H Liu, G G Wu, J B Wang, X Wu, L Bai, W Jiang, B B Lv, A H Pan, J W Jia, P Li, K Zhao, L X Jiang, X M Tang
The anti-malarial drug, artemisinin, is quite expensive as a result of its slow content in Artemisia annua. Recent investigations have suggested that genetic engineering of A. annua is a promising approach to improve the yield of artemisinin. In this study, the transgenic A. annua strain GYR, which has high artemisinin content, was evaluated in an environmental release trial. First, GYR plants were compared with the wild-type variety NON-GYR, with regard to phenotypic characters (plant height, crown width, stem diameter, germination rate, leaf dry weight, 1000-seed weight, leave shape)...
August 26, 2016: Genetics and Molecular Research: GMR
Khadiza Khatun, Arif Hasan Khan Robin, Jong-In Park, Chang Kil Kim, Ki-Byung Lim, Min-Bae Kim, Do-Jin Lee, Ill Sup Nou, Mi-Young Chung
The actin depolymerizing factor (ADF) proteins have growth, development, defense-related and growth regulatory functions in plants. The present study used genome-wide analysis to investigate ADF family genes in tomato. Eleven tomato ADF genes were identified and differential expression patterns were found in different organs. SlADF6 was preferentially expressed in roots, suggesting its function in root development. SlADF1, SlADF3 and SlADF10 were predominately expressed in the flowers compared to the other organs and specifically in the stamen compared to other flower parts, indicating their potential roles in pollen development...
2016: Genes
Antoaneta V Popova, Dirk K Hincha
Flavonoids are a large and diverse group of plant secondary metabolites that are mainly present as glycosides. They are often accumulated in response to abiotic stresses such as UV radiation, drought, cold and freezing. The most extensively studied function of flavonoids is their antioxidant activity although their importance as antioxidants in plants has been questioned. We therefore aim to study effects of flavonols on cellular stress tolerance that are independent of their antioxidant function. Here we investigate the effects of the glycosylated flavonols kaempferol-3-O-glucoside, kaempferol-7-O-glucoside, quercetin-3-O-glucoside and quercetin-3-O-rhamnoside on liposome stability after freezing and drying...
September 24, 2016: Biochimica et Biophysica Acta
Hui Liu, Jian Liu, Yongxuan Wei
Metacaspases play critical roles in developmentally regulated and environmentally induced programmed cell death in plants. In this study, we systematically identified and analyzed metacaspase gene family in tomato (Solanum lycopersicum). The results illustrated that tomato possesses eight metacaspase genes (SlMC1-8) located on chromosomes 1, 3, 5, 9, and 10. SlMC1-6 belonged to type I metacaspases and had 5 exon/4 intron structures. SlMC7 and 8 were type II metacaspases and had 2 and 3 exons, respectively. Expression analysis revealed distinct expression patterns of SlMCs in various tomato tissues...
October 21, 2016: Biochemical and Biophysical Research Communications
Bulat Kuluev, Azamat Avalbaev, Elena Mikhaylova, Yuriy Nikonorov, Zoya Berezhneva, Alexey Chemeris
Changes in the expression levels of tobacco expansin genes NtEXPA1, NtEXPA4, NtEXPA5, and NtEXPA6 were studied in different organs of tobacco (Nicotiana tabacum L.) as well as in response to phytohormone and stress treatments. It was shown that NtEXPA1, NtEXPA4 and NtEXPA5 transcripts were predominantly expressed in the shoot apices and young leaves, but almost absent in mature leaves and roots. The NtEXPA6 mRNA was found at high levels in calluses containing a large number of undifferentiated cells, but hardly detectable in the leaves of different ages and roots...
September 9, 2016: Journal of Plant Physiology
Fetch more papers »
Fetching more papers... Fetching...
Read by QxMD. Sign in or create an account to discover new knowledge that matter to you.
Remove bar
Read by QxMD icon Read

Search Tips

Use Boolean operators: AND/OR

diabetic AND foot
diabetes OR diabetic

Exclude a word using the 'minus' sign

Virchow -triad

Use Parentheses

water AND (cup OR glass)

Add an asterisk (*) at end of a word to include word stems

Neuro* will search for Neurology, Neuroscientist, Neurological, and so on

Use quotes to search for an exact phrase

"primary prevention of cancer"
(heart or cardiac or cardio*) AND arrest -"American Heart Association"