keyword
MENU ▼
Read by QxMD icon Read
search

neuronal circuits

keyword
https://www.readbyqxmd.com/read/28324978/influence-of-electrode-configuration-on-the-electric-field-distribution-during-transcutaneous-spinal-direct-current-stimulation-of-the-cervical-spine
#1
Sofia R Fernandes, Ricardo Salvador, Cornelia Wenger, Mamede A de Carvalho, Pedro C Miranda
Transcutaneous spinal direct current stimulation (tsDCS) is a recent technique with promising neuromodulatory effects on spinal neuronal circuitry. The main objective of the present study was to perform a finite element analysis of the electric field distribution in tsDCS in the cervical spine region, with varying electrode configurations and geometry. A computational model of a human trunk was generated with nine tissue meshes. Three electrode configurations were tested: A) rectangular saline-soaked sponge target and return electrodes placed over C3 and T3 spinous processes, respectively; B1) circular saline-soaked sponge target and return electrodes placed over C7 spinous process and right deltoid muscle, respectively; B2) same configuration as B1, considering circular shaped electrodes with sponge and rubber layers and a small circular connector on the top surface...
August 2016: Conference Proceedings: Annual International Conference of the IEEE Engineering in Medicine and Biology Society
https://www.readbyqxmd.com/read/28324764/enhancing-mitofusin-marf-ameliorates-neuromuscular-dysfunction-in-drosophila-models-of-tdp-43-proteinopathies
#2
Bilal Khalil, Marie-Jeanne Cabirol-Pol, Laetitia Miguel, Alexander J Whitworth, Magalie Lecourtois, Jean-Charles Liévens
Transactive response DNA-binding protein 43 kDa (TDP-43) is considered a major pathological protein in amyotrophic lateral sclerosis and frontotemporal lobar degeneration. The precise mechanisms by which TDP-43 dysregulation leads to toxicity in neurons are not fully understood. Using TDP-43-expressing Drosophila, we examined whether mitochondrial dysfunction is a central determinant in TDP-43 pathogenesis. Expression of human wild-type TDP-43 in Drosophila neurons results in abnormally small mitochondria...
February 27, 2017: Neurobiology of Aging
https://www.readbyqxmd.com/read/28324454/reward-circuitry-in-addiction
#3
REVIEW
Sarah Cooper, A J Robison, Michelle S Mazei-Robison
Understanding the brain circuitry that underlies reward is critical to improve treatment for many common health issues, including obesity, depression, and addiction. Here we focus on insights into the organization and function of reward circuitry and its synaptic and structural adaptations in response to cocaine exposure. While the importance of certain circuits, such as the mesocorticolimbic dopamine pathway, are well established in drug reward, recent studies using genetics-based tools have revealed functional changes throughout the reward circuitry that contribute to different facets of addiction, such as relapse and craving...
March 21, 2017: Neurotherapeutics: the Journal of the American Society for Experimental NeuroTherapeutics
https://www.readbyqxmd.com/read/28324169/roles-of-centromedian-parafascicular-nuclei-of-thalamus-and-cholinergic-interneurons-in-the-dorsal-striatum-in-associative-learning-of-environmental-events
#4
REVIEW
Ko Yamanaka, Yukiko Hori, Takafumi Minamimoto, Hiroshi Yamada, Naoyuki Matsumoto, Kazuki Enomoto, Toshihiko Aosaki, Ann M Graybiel, Minoru Kimura
The thalamus provides a massive input to the striatum, but despite accumulating evidence, the functions of this system remain unclear. It is known, however, that the centromedian (CM) and parafascicular (Pf) nuclei of the thalamus can strongly influence particular striatal neuron subtypes, notably including the cholinergic interneurons of the striatum (CINs), key regulators of striatal function. Here, we highlight the thalamostriatal system through the CM-Pf to striatal CINs. We consider how, by virtue of the direct synaptic connections of the CM and PF, their neural activity contributes to the activity of CINs and striatal projection neurons (SPNs)...
March 21, 2017: Journal of Neural Transmission
https://www.readbyqxmd.com/read/28323938/loss-of-action-via-neurotensin-leptin-receptor-neurons-disrupts-leptin-and-ghrelin-mediated-control-of-energy-balance
#5
Juliette A Brown, Raluca Bugescu, Thomas Mayer, Adriana Gata-Garcia, Gizem Kurt, Hillary L Woodworth, Gina M Leinninger
The hormones ghrelin and leptin act via the lateral hypothalamic area (LHA) to modify energy balance but the underlying neural mechanisms remain unclear. We investigated how leptin and ghrelin engage LHA neurons to modify energy balance behaviors and whether there is any cross-talk between leptin and ghrelin-responsive circuits. We demonstrate that ghrelin activates LHA neurons expressing Hypocretin/Orexin (OX) to increase food intake. Leptin mediates anorectic actions via separate neurons expressing the long form of the leptin receptor (LepRb), many of which co-express the neuropeptide neurotensin (Nts); we refer to these as NtsLepRb neurons...
March 10, 2017: Endocrinology
https://www.readbyqxmd.com/read/28323619/fast-spiking-gaba-circuit-dynamics-in-the-auditory-cortex-predict-recovery-of-sensory-processing-following-peripheral-nerve-damage
#6
Jennifer Resnik, Daniel B Polley
Cortical neurons remap their receptive fields and rescale sensitivity to spared peripheral inputs following sensory nerve damage. To address how these plasticity processes are coordinated over the course of functional recovery, we tracked receptive field reorganization, spontaneous activity, and response gain from individual principal neurons in the adult mouse auditory cortex over a 50-day period surrounding either moderate or massive auditory nerve damage. We related the day-by-day recovery of sound processing to dynamic changes in the strength of intracortical inhibition from parvalbumin-expressing (PV) inhibitory neurons...
March 21, 2017: ELife
https://www.readbyqxmd.com/read/28319257/hunger-and-thirst-interact-to-regulate-ingestive-behavior-in-flies-and-mammals
#7
REVIEW
Nicholas Jourjine
In animals, nervous systems regulate the ingestion of food and water in a manner that reflects internal metabolic need. While the coordination of these two ingestive behaviors is essential for homeostasis, it has been unclear how internal signals of hunger and thirst interact to effectively coordinate food and water ingestion. In the last year, work in insects and mammals has begun to elucidate some of these interactions. As reviewed here, these studies have identified novel molecular and neural mechanisms that coordinate the regulation of food and water ingestion behaviors...
March 20, 2017: BioEssays: News and Reviews in Molecular, Cellular and Developmental Biology
https://www.readbyqxmd.com/read/28317880/antidromic-rectifying-gap-junctions-amplify-chemical-transmission-at-functionally-mixed-electrical-chemical-synapses
#8
Ping Liu, Bojun Chen, Roger Mailler, Zhao-Wen Wang
Neurons communicate through chemical synapses and electrical synapses (gap junctions). Although these two types of synapses often coexist between neurons, little is known about whether they interact, and whether any interactions between them are important to controlling synaptic strength and circuit functions. By studying chemical and electrical synapses between premotor interneurons (AVA) and downstream motor neurons (A-MNs) in the Caenorhabditis elegans escape circuit, we found that disrupting either the chemical or electrical synapses causes defective escape response...
March 20, 2017: Nature Communications
https://www.readbyqxmd.com/read/28316111/pattern-separation-in-the-hippocampus-through-the-eyes-of-computational-modeling
#9
REVIEW
Spyridon Chavlis, Panayiota Poirazi
Pattern separation is a mnemonic process that has been extensively studied over the years. It entails the ability -of primarily hippocampal circuits- to distinguish between highly similar inputs, via generating different neuronal activity (output) patterns. The dentate gyrus in particular has long been hypothesized to implement pattern separation by detecting and storing similar inputs as distinct representations. The ways in which these distinct representations can be generated have been explored in a number of theoretical and computational modelling studies...
March 18, 2017: Synapse
https://www.readbyqxmd.com/read/28315865/proteomic-analysis-of-mouse-cortex-postsynaptic-density-following-neonatal-brain-hypoxia-ischemia
#10
Guo Shao, Yongqiang Wang, Shenheng Guan, Alma L Burlingame, Fuxin Lu, Renatta Knox, Donna M Ferriero, Xiangning Jiang
Proteomics of the synapses and postsynaptic densities (PSDs) have provided a deep understanding of protein composition and signal networks in the adult brain, which underlie neuronal plasticity and neurodegenerative or psychiatric disorders. However, there is a paucity of knowledge about the architecture and organization of PSDs in the immature brain, and how it is modified by brain injury in an early developing stage. Mass spectrometry (MS)-based proteomic analysis was performed on PSDs prepared from cortices of postnatal day 9 naïve mice or pups which had suffered hypoxic-ischemic (HI) brain injury...
March 18, 2017: Developmental Neuroscience
https://www.readbyqxmd.com/read/28315455/7-8-dihydroxyflavone-facilitates-the-action-exercise-to-restore-plasticity-and-functionality-implications-for-early-brain-trauma-recovery
#11
Gokul Krishna, Rahul Agrawal, Yumei Zhuang, Zhe Ying, Afshin Paydar, Neil G Harris, Luiz Fernando F Royes, Fernando Gomez-Pinilla
Metabolic dysfunction accompanying traumatic brain injury (TBI) severely impairs the ability of injured neurons to comply with functional demands. This limits the success of rehabilitative strategies by compromising brain plasticity and function, and highlights the need for early interventions to promote energy homeostasis. We sought to examine whether the TrkB agonist, 7,8-dihydroxyflavone (7,8-DHF) normalizes brain energy deficits and restablishes more normal patterns of functional connectivity, while enhancing the effects of exercise during post-TBI period...
March 14, 2017: Biochimica et Biophysica Acta
https://www.readbyqxmd.com/read/28315444/directional-spread-of-activity-in-synaptic-networks-of-the-human-lateral-amygdala
#12
Stéphanie Graebenitz, Manuela Cerina, Jörg Lesting, Olga Kedo, Ali Gorji, Heinz Pannek, Volkmar Hans, Karl Zilles, Hans-Christian Pape, Erwin-Josef Speckmann
Spontaneous epileptiform activity has previously been observed in lateral amygdala (LA) slices derived from patients with intractable-temporal lobe epilepsy. The present study aimed to characterize intranuclear LA synaptic connectivity and to test the hypothesis that differences in the spread of flow of neuronal activity may relate to spontaneous epileptiform activity occurrence. Electrical activity was evoked through electrical microstimulation in acute human brain slices containing the LA, signals were recorded as local field potentials combined with fast optical imaging of voltage-sensitive dye fluorescence...
March 14, 2017: Neuroscience
https://www.readbyqxmd.com/read/28315308/target-specific-alterations-in-the-vip-inhibitory-drive-to-hippocampal-gabaergic-cells-after-status-epilepticus
#13
Linda Suzanne David, Lisa Topolnik
Status epilepticus (SE) is associated with complex reorganization of hippocampal circuits involving a significant loss of specific subtypes of GABAergic interneurons. While adaptive circuit plasticity may increase the chances for recruitment of surviving interneurons, the underlying mechanisms remain largely unknown. We studied the alterations in the inhibitory tone received by the hippocampal CA1 oriens/alveus (O/A) interneurons from the vasoactive intestinal peptide (VIP)- and calretinin (CR)-expressing interneurons using the pilocarpine-induced status epilepticus (SE) model of epilepsy...
March 14, 2017: Experimental Neurology
https://www.readbyqxmd.com/read/28314951/relaxin-3-rxfp3-signalling-in-mouse-hypothalamus-no-effect-of-rxfp3-activation-on-corticosterone-despite-reduced-presynaptic-excitatory-input-onto-paraventricular-crh-neurons-in-vitro
#14
C Zhang, D V Baimoukhametova, C M Smith, J S Bains, Andrew L Gundlach
Relaxin-3/RXFP3 signalling is proposed to be involved in the neuromodulatory control of arousal- and stress-related neural circuits. Furthermore, previous studies in rats have led to the proposal that relaxin-3/RXFP3 signalling is associated with activation of the hypothalamic-pituitary-adrenal axis, but direct evidence for RXFP3-related actions on the activity of hypothalamic corticotropin-releasing hormone (CRH) neurons is lacking. In this study, we investigated characteristics of the relaxin-3/RXFP3 system in mouse hypothalamus...
March 17, 2017: Psychopharmacology
https://www.readbyqxmd.com/read/28303403/hypocretin-orexin-and-plastic-adaptations-associated-with-drug-abuse
#15
Corey Baimel, Stephanie L Borgland
Dopamine neurons in the ventral tegmental area (VTA) are a critical part of the neural circuits that underlie reward learning and motivation. Dopamine neurons send dense projections throughout the brain and recent observations suggest that both the intrinsic properties and the functional output of dopamine neurons are dependent on projection target and are subject to neuromodulatory influences. Lateral hypothalamic hypocretin (also termed orexin) neurons project to the VTA and contain both hypocretin and dynorphin peptides in the same dense core vesicles suggesting they may be co-released...
March 17, 2017: Current Topics in Behavioral Neurosciences
https://www.readbyqxmd.com/read/28303263/astrocyte-ca-2-influx-negatively-regulates-neuronal-activity
#16
Yao V Zhang, Kiel G Ormerod, J Troy Littleton
Maintenance of neural circuit activity requires appropriate regulation of excitatory and inhibitory synaptic transmission. Recently, glia have emerged as key partners in the modulation of neuronal excitability; however, the mechanisms by which glia regulate neuronal signaling are still being elucidated. Here, we describe an analysis of how Ca(2+) signals within Drosophila astrocyte-like glia regulate excitability in the nervous system. We find that Drosophila astrocytes exhibit robust Ca(2+) oscillatory activity manifested by fast, recurrent microdomain Ca(2+) fluctuations within processes that infiltrate the synaptic neuropil...
March 2017: ENeuro
https://www.readbyqxmd.com/read/28303092/synaptic-ensemble-underlying-the-selection-and-consolidation-of-neuronal-circuits-during-learning
#17
REVIEW
Yoshio Hoshiba, Takeyoshi Wada, Akiko Hayashi-Takagi
Memories are crucial to the cognitive essence of who we are as human beings. Accumulating evidence has suggested that memories are stored as a subset of neurons that probably fire together in the same ensemble. Such formation of cell ensembles must meet contradictory requirements of being plastic and responsive during learning, but also stable in order to maintain the memory. Although synaptic potentiation is presumed to be the cellular substrate for this process, the link between the two remains correlational...
2017: Frontiers in Neural Circuits
https://www.readbyqxmd.com/read/28301776/neurotransmitter-switching-in-the-developing-and-adult-brain
#18
Nicholas C Spitzer
Neurotransmitter switching is the gain of one neurotransmitter and the loss of another in the same neuron in response to chronic stimulation. Neurotransmitter receptors on postsynaptic cells change to match the identity of the newly expressed neurotransmitter. Neurotransmitter switching often appears to change the sign of the synapse from excitatory to inhibitory or from inhibitory to excitatory. In these cases, neurotransmitter switching and receptor matching thus change the polarity of the circuit in which they take place...
March 6, 2017: Annual Review of Neuroscience
https://www.readbyqxmd.com/read/28301770/imaging-and-optically-manipulating-neuronal-ensembles
#19
Luis Carrillo-Reid, Weijian Yang, Jae-Eun Kang Miller, Darcy S Peterka, Rafael Yuste
The neural code that relates the firing of neurons to the generation of behavior and mental states must be implemented by spatiotemporal patterns of activity across neuronal populations. These patterns engage selective groups of neurons, called neuronal ensembles, which are emergent building blocks of neural circuits. We review optical and computational methods, based on two-photon calcium imaging and two-photon optogenetics, to detect, characterize, and manipulate neuronal ensembles in three dimensions. We review data using these methods in the mammalian cortex that demonstrate the existence of neuronal ensembles in the spontaneous and evoked cortical activity in vitro and in vivo...
March 15, 2017: Annual Review of Biophysics
https://www.readbyqxmd.com/read/28299654/roles-of-runx-genes-in-nervous-system-development
#20
Jae Woong Wang, Stefano Stifani
Runt-related (Runx) transcription factors play essential roles during development and adult tissue homeostasis and are responsible for several human diseases. They regulate a variety of biological mechanisms in numerous cell lineages. Recent years have seen significant progress in our understanding of the functions performed by Runx proteins in the developing and postnatal mammalian nervous system. In both central and peripheral nervous systems, Runx1 and Runx3 display remarkably specific expression in mostly non-overlapping groups of postmitotic neurons...
2017: Advances in Experimental Medicine and Biology
keyword
keyword
106585
1
2
Fetch more papers »
Fetching more papers... Fetching...
Read by QxMD. Sign in or create an account to discover new knowledge that matter to you.
Remove bar
Read by QxMD icon Read
×

Search Tips

Use Boolean operators: AND/OR

diabetic AND foot
diabetes OR diabetic

Exclude a word using the 'minus' sign

Virchow -triad

Use Parentheses

water AND (cup OR glass)

Add an asterisk (*) at end of a word to include word stems

Neuro* will search for Neurology, Neuroscientist, Neurological, and so on

Use quotes to search for an exact phrase

"primary prevention of cancer"
(heart or cardiac or cardio*) AND arrest -"American Heart Association"