Read by QxMD icon Read

molecular breast cancer

Deepak Reddy Gade, Amareswararao Makkapati, Rajesh Babu Yarlagadda, Godefridus J Peters, B S Sastry, V V S Rajendra Prasad
Overexpression of P-glycoprotein (P-gp) leads to the emergence of multidrug resistance (MDR) in cancer treatment. Acridones have the potential to reverse MDR and sensitize cells. In the present study, we aimed to elucidate the chemosensitization potential of acridones by employing various molecular modelling techniques. Pharmacophore modeling was performed for the dataset of chemosensitizing acridones earlier proved for cytotoxic activity against MCF7 breast cancer cell line. Gaussian-based QSAR studies also performed to predict the favored and disfavored region of the acridone molecules...
February 24, 2018: Computational Biology and Chemistry
Charles Hellec, Maxime Delos, Mathieu Carpentier, Agnès Denys, Fabrice Allain
Heparan sulfate 3-O-sulfotransferases (HS3STs) catalyze the final maturation step of heparan sulfates. Although seven HS3ST isozymes have been described in human, 3-O-sulfation is a relatively rare modification, and only a few biological processes have been described to be influenced by 3-O-sulfated motifs. A conflicting literature has recently reported that HS3ST2, 3A, 3B and 4 may exhibit either tumor-promoting or anti-oncogenic properties, depending on the model used and cancer cell phenotype. Hence, we decided to compare the consequences of the overexpression of each of these HS3STs in the same cellular model...
2018: PloS One
Muhammad Khairi Ahmad, Nur Ainina Abdollah, Nurul Husna Shafie, Narazah Mohd Yusof, Siti Razila Abdul Razak
Mitogen-activated protein kinases (MAPKs) are the main regulators of cellular proliferation, growth, and survival in physiological or pathological conditions. Aberrant MAPK signaling plays a pivotal role in carcinogenesis, which leads to development and progression of human cancer. Dual-specificity phosphatase 6 (DUSP6), a member of the MAPK phosphatase family, interacts with specifically targeted extracellular signal-regulated kinase 1/2 via negative feedback regulation in the MAPK pathway of mammalian cells...
February 2018: Cancer Biology & Medicine
Ali Ben Djoudi Ouadda, Yi He, Viviane Calabrese, Hidetaka Ishii, Rony Chidiac, Jean-Philippe Gratton, Philippe P Roux, Nathalie Lamarche-Vane
Cdc42 GTPase-activating protein (CdGAP, also named ARHGAP31) is a negative regulator of the GTPases Rac1 and Cdc42. Associated with the rare developmental disorder Adams-Oliver Syndrome (AOS), CdGAP is critical for embryonic vascular development and VEGF-mediated angiogenesis. Moreover, CdGAP is an essential component in the synergistic interaction between TGFβ and ErbB-2 signaling pathways during breast cancer cell migration and invasion, and is a novel E-cadherin transcriptional co-repressor with Zeb2 in breast cancer...
February 20, 2018: Oncotarget
Timothy Kwang Yong Tay, Aye Aye Thike, Nirmala Pathmanathan, Ana Richelia Jara-Lazaro, Jabed Iqbal, Adeline Shi Hui Sng, Heng Seow Ye, Jeffrey Chun Tatt Lim, Valerie Cui Yun Koh, Jane Sie Yong Tan, Joe Poh Sheng Yeong, Zi Long Chow, Hui Hua Li, Chee Leong Cheng, Puay Hoon Tan
Background: Ki67 positivity in invasive breast cancers has an inverse correlation with survival outcomes and serves as an immunohistochemical surrogate for molecular subtyping of breast cancer, particularly ER positive breast cancer. The optimal threshold of Ki67 in both settings, however, remains elusive. We use computer assisted image analysis (CAIA) to determine the optimal threshold for Ki67 in predicting survival outcomes and differentiating luminal B from luminal A breast cancers...
February 20, 2018: Oncotarget
Huan Gao, Yue Zhang, Lei Dong, Xiao-Yu Qu, Li-Na Tao, Yue-Ming Zhang, Jing-Hui Zhai, Yan-Qing Song
To investigate the effects of triptolide (TPI) on proliferation, autophagy and death in human breast cancer MCF-7 cells, and to elucidate the associated molecular mechanisms, intracellular alterations were analyzed using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) and flow cytometry assays. The results of the MTT assay revealed that TPI significantly reduced the MCF-7 cell survival rate when the concentration was >10 nmol/l. TPI activated a caspase cascade reaction by regulating Bcl-2-associated X protein (Bax), caspase-3 and B-cell lymphoma 2 expression, and promoted programmed cell death via the mitochondrial pathway...
April 2018: Experimental and Therapeutic Medicine
S Wang, Z Zou, X Luo, Y Mi, H Chang, D Xing
Liver receptor homolog-1 (LRH1) has been shown to promote tumor proliferation and development. However, the functions of LRH1 in mediating cancer cells chemoresistance are still not clear. Here, we found LRH1 levels were significantly elevated in primary breast cancer tissues in patients who developed early recurrence. Similarly, adriamycin (ADR)-resistant breast cancer cell lines also exerted high LRH1 expression. Indeed, overexpression of LRH1 attenuated cytotoxicity of chemotherapeutic drugs ADR and cisplatin (DDP) in breast cancer cells in vitro and in nude mice tumor model...
March 16, 2018: Oncogene
Rokaya El Ansari, Madeleine L Craze, Maria Diez-Rodriguez, Christopher C Nolan, Ian O Ellis, Emad A Rakha, Andrew R Green
Breast cancer (BC) is a heterogeneous disease characterised by variant biology, metabolic activity and patient outcome. This study aimed to evaluate the biological and prognostic value of the membrane solute carrier, SLC3A2 in BC with emphasis on the intrinsic molecular subtypes. SLC3A2 was assessed at the genomic level, using METABRIC data (n = 1980), and at the proteomic level, using immunohistochemistry on tissue microarray (TMA) sections constructed from a large well-characterised primary BC cohort (n = 2500)...
March 16, 2018: British Journal of Cancer
Maioli E, Daveri E, Maellaro E, Ietta F, Cresti L, Valacchi G
In the past few years, we focused the interest on rottlerin, an old/new natural substance that, over the time, has revealed a number of cellular and molecular targets, all potentially implicated in the fight against cancer. Past and recent literature well demonstrated that rottlerin is an inhibitor of enzymes, transcription factors and signaling molecules that control cancer cell life and death. Although the rottlerin anticancer activity has been mainly ascribed to apoptosis and/or autophagy induction, recent findings unveiled the existence of additional mechanisms of toxicity...
March 12, 2018: Archives of Biochemistry and Biophysics
Minle Li, Keyu Gao, Laili Chu, Junnian Zheng, Jing Yang
Aurora kinase A (Aurora-A), a member of the Aurora family of serine/threonine kinases, plays a critical role in multiple steps of mitotic progression, including microtubule stability during the G1 phase of the cell cycle, chromosome alignment and segregation, and cytokinesis and is aberrantly expressed in various types of human cancers. In addition to its classic functions, recent studies have indicated that Aurora-A is critical for controlling self-renewal of embryonic stem cells through negative regulation of p53...
March 12, 2018: International Journal of Biochemistry & Cell Biology
Francisco Lopez-Tapia, Christine Brotherton-Pleiss, Peibin Yue, Heide Murakami, Ana Carolina Costa Araujo, Bruna Reis Dos Santos, Erin Ichinotsubo, Anna Rabkin, Raj Shah, Megan Lantz, Suzie Chen, Marcus A Tius, James Turkson
The molecular determinants for the activities of the reported benzoic acid (SH4-54), salicylic acid (BP-1-102), and benzohydroxamic acid (SH5-07)-based STAT3 inhibitors were investigated to design optimized analogues. All three leads are based on an N -methylglycinamide scaffold, with its two amine groups condensed with three different functionalities. The three functionalities and the CH2 group of the glycinamide scaffold were separately modified. The replacement of the pentafluorobenzene or cyclohexylbenzene, or replacing the benzene ring of the aromatic carboxylic or hydroxamic acid motif with heterocyclic components (containing nitrogen and oxygen elements) all decreased potency...
March 8, 2018: ACS Medicinal Chemistry Letters
Jianliang Shen, Linwen Zeng, Liangming Pan, Shaofeng Yuan, Ming Wu, Xiongdong Kong
Tetramethylpyrazine (TMP), an effective component of the traditional Chinese medicine Chuanxiong Hort, has been proven to exhibit a beneficial effect in a number of types of malignant epithelial cancer. However, the mode of action of TMP on breast cancer cells remains unknown. The aim of the present study was to investigate the regulatory effect of TMP on breast cancer cells and its underlying molecular mechanism of action. Different concentrations of TMP were used to treat breast cancer cells, and subsequently, the effects on the viability, apoptosis, and migration and invasion abilities were determined...
April 2018: Oncology Letters
S Y N Jamaludin, I Azimi, F M Davis, A A Peters, T J Gonda, E W Thompson, S J Roberts-Thomson, G R Monteith
CXC ligand (L)12 is a chemokine implicated in the migration, invasion and metastasis of cancer cells via interaction with its receptors CXC chemokine receptor (CXCR)4 and CXCR7. In the present study, CXCL12-mediated Ca2+ signalling was compared with two basal-like breast cancer cell lines, MDA-MB-231 and MDA-MB-468, which demonstrate distinct metastatic potential. CXCL12 treatment induced Ca2+ responses in the more metastatic MDA-MB-231 cells but not in the less metastatic MDA-MB-468 cells. Assessment of mRNA levels of CXCL12 receptors and their potential modulators in both cell lines revealed that CXCR4 and CXCR7 levels were increased in MDA-MB-231 cells compared with MDA-MB-468 cells...
April 2018: Oncology Letters
Xiaoli Wang, Wei Xiong, Yiyin Tang
Breast cancer is one of the most common metastatic tumor types. Reports have suggested that Tunicamycin may inhibit the aggressiveness of cancer cells by promoting their apoptosis. In the present study, the inhibitory effects of Tunicamycin were investigated and the potential molecular mechanism underlying the Tunicamycin-inhibited growth and aggressiveness of breast cancer cells was explored. In vitro assays demonstrated that Tunicamycin significantly inhibited growth and arrested the cell cycle of breast cancer cells in a dose-dependent manner, compared with control cells...
April 2018: Oncology Letters
Jacob C Easaw, Susan McCall, Adrian Azim
Stable cancer patients diagnosed with a pulmonary embolus or deep vein thrombosis are commonly referred to the emergency department for management. This practice strains an already overburdened emergency department and is associated with long wait times and poor disease/injection education for patients. This pilot study sought to determine if stable cancer patients with newly diagnosed cancer-associated thrombosis could be effectively managed by community-based pharmacists who followed an evidence-based protocol to prescribe and initiate low-molecular weight heparin therapy...
January 1, 2018: Journal of Oncology Pharmacy Practice
Motoki Takaku, Sara A Grimm, John D Roberts, Kaliopi Chrysovergis, Brian D Bennett, Page Myers, Lalith Perera, Charles J Tucker, Charles M Perou, Paul A Wade
GATA3 is frequently mutated in breast cancer; these mutations are widely presumed to be loss-of function despite a dearth of information regarding their effect on disease course or their mechanistic impact on the breast cancer transcriptional network. Here, we address molecular and clinical features associated with GATA3 mutations. A novel classification scheme defines distinct clinical features for patients bearing breast tumors with mutations in the second GATA3 zinc-finger (ZnFn2). An engineered ZnFn2 mutant cell line by CRISPR-Cas9 reveals that mutation of one allele of the GATA3 second zinc finger (ZnFn2) leads to loss of binding and decreased expression at a subset of genes, including Progesterone Receptor...
March 13, 2018: Nature Communications
Javed Iqbal, Banzeer Ahsan Abbasi, Riffat Batool, Tariq Mahmood, Barkat Ali, Ali Talha Khalil, Sobia Kanwal, Sayed Afzal Shah, Riaz Ahmad
Breast cancer (BC) is a devastating disease in female around the world causing significant health care burden in both developed and developing countries. In many cases BC has shown resistance to chemotherapy, radiation and hormonal therapy. Development of new, cost effective, affordable treatment method is the need of hour. Chemical compounds isolated from plants are often biologically active and is attracting the attention of scientific community. Different in vitro and in vivo studies have shown a potential role in reducing the risk of cancer metastasis...
March 10, 2018: European Journal of Pharmacology
Deling Wang, Jia-Rui Li, Yu-Hang Zhang, Lei Chen, Tao Huang, Yu-Dong Cai
Breast cancer is one of the most common malignancies in women. Patient-derived tumor xenograft (PDX) model is a cutting-edge approach for drug research on breast cancer. However, PDX still exhibits differences from original human tumors, thereby challenging the molecular understanding of tumorigenesis. In particular, gene expression changes after tissues are transplanted from human to mouse model. In this study, we propose a novel computational method by incorporating several machine learning algorithms, including Monte Carlo feature selection (MCFS), random forest (RF), and rough set-based rule learning, to identify genes with significant expression differences between PDX and original human tumors...
March 12, 2018: Genes
J J Zhu, D C Jiao, J H Qiao, L N Wang, Y Z Ma, Z D Lu, Z Z Liu
Objective: To explore the expression of androgen receptor (AR) in the tissues as well as its association with the clinicopathological factors of primary breast cancer patients treated with neoadjuvant chemotherapy (NAC), and analyze the effect of AR in the prediction of pathologic complete response (PCR) rate. Method: A total of 668 breast cancer patients treated with NAC in Henan Cancer Hospital between March 2014 and June 2017 were retrospectively reviewed. The relationship of AR expression and clinicopathological characteristics was calculated using chi square test...
February 27, 2018: Zhonghua Yi Xue za Zhi [Chinese medical journal]
Artur Beberok, Dorota Wrześniok, Jakub Rok, Zuzanna Rzepka, Michalina Respondek, Ewa Buszman
Fluoroquinolone antibiotics induce cytotoxicity in various cancer cell lines and may therefore represent a potentially important source of novel anticancer agents. The aim of the present study was to examine the effect of ciprofloxacin on the viability, redox balance, apoptosis, expression of p53, Bax and Bcl-2, cell cycle distribution and DNA fragmentation of triple-negative MDA-MB-231 breast cancer cells. The results of the present study demonstrated that ciprofloxacin decreases cell viability in a dose- and time-dependent manner...
March 8, 2018: International Journal of Oncology
Fetch more papers »
Fetching more papers... Fetching...
Read by QxMD. Sign in or create an account to discover new knowledge that matter to you.
Remove bar
Read by QxMD icon Read

Search Tips

Use Boolean operators: AND/OR

diabetic AND foot
diabetes OR diabetic

Exclude a word using the 'minus' sign

Virchow -triad

Use Parentheses

water AND (cup OR glass)

Add an asterisk (*) at end of a word to include word stems

Neuro* will search for Neurology, Neuroscientist, Neurological, and so on

Use quotes to search for an exact phrase

"primary prevention of cancer"
(heart or cardiac or cardio*) AND arrest -"American Heart Association"