Read by QxMD icon Read

Plasma membrane ceramide

S Rodriguez-Cuenca, V Pellegrinelli, M Campbell, M Oresic, A Vidal-Puig
Sphingolipids in general and ceramides in particular, contribute to pathophysiological mechanisms by modifying signalling and metabolic pathways. Here, we present the available evidence for a bidirectional homeostatic crosstalk between sphingolipids and glycerophospholipids, whose dysregulation contributes to lipotoxicity induced metabolic stress. The initial evidence for this crosstalk originates from simulated models designed to investigate the biophysical properties of sphingolipids in plasma membrane representations...
January 16, 2017: Progress in Lipid Research
Fatima Bilal, Michaël Pérès, Nathalie Andrieu-Abadie, Thierry Levade, Bassam Badran, Ahmad Daher, Bruno Ségui
Sphingomyelin synthases 1 and 2 convert the anti-oncometabolite ceramide to sphingomyelin, the most abundant sphingolipid in plasma membrane. CD95L-induced ceramide increase is associated with the caspase-dependent inhibition of sphingomyelin synthesis, which enhances the mitochondrial route to apoptosis. Knocking down sphingomyelin synthase 1 or inhibiting sphingomyelin synthesis facilitates ceramide accumulation, cytochrome c release from mitochondria, and caspase-9 activation in cancer cell upon CD95L treatment...
2017: Methods in Molecular Biology
Syed M Qadri, Deborah Chen, Peter Schubert, Darian L Perruzza, Varsha Bhakta, Dana V Devine, William P Sheffield
BACKGROUND: Pathogen reduction treatment using riboflavin and ultraviolet light illumination (Mirasol) effectively reduces the risk of transfusion-transmitted infections. This treatment is currently licensed for only platelets and plasma products, while its application to whole blood (WB) to generate pathogen-inactivated red blood cells (RBCs) is under development. RBC storage lesion, constituting numerous morphologic and biochemical changes, influences RBC quality and limits shelf life...
December 26, 2016: Transfusion
Alireza Lajevardipour, James W M Chon, Amitabha Chattopadhyay, Andrew H A Clayton
Spectral relaxation from fluorescent probes is a useful technique for determining the dynamics of condensed phases. To this end, we have developed a method based on wide-field spectral fluorescence lifetime imaging microscopy to extract spectral relaxation correlation times of fluorescent probes in living cells. We show that measurement of the phase and modulation of fluorescence from two wavelengths permit the identification and determination of excited state lifetimes and spectral relaxation correlation times at a single modulation frequency...
November 22, 2016: Scientific Reports
Anis Ahmad, Alla Mitrofanova, Jacek Bielawski, Yidong Yang, Brian Marples, Alessia Fornoni, Youssef H Zeidan
The molecular mechanisms responsible for the development of proteinuria and glomerulosclerosis in radiation nephropathy remain largely unknown. Podocytes are increasingly recognized as key players in the pathogenesis of proteinuria in primary and secondary glomerular disorders. The lipid-modulating enzyme sphingomyelin phosphodiesterase acid-like 3B (SMPDL3b) is a key determinant of podocyte injury and a known off target of the anti-CD20 antibody rituximab (RTX). The current study investigates the role of sphingolipids in radiation-induced podocytopathy...
November 11, 2016: FASEB Journal: Official Publication of the Federation of American Societies for Experimental Biology
Masashi Maekawa, Minhyoung Lee, Kuiru Wei, Neale D Ridgway, Gregory D Fairn
Accumulation of phosphatidylserine in the inner leaflet of the plasma membrane is a hallmark of eukaryotes. Sublethal levels of staurosporine and related compounds deplete phosphatidylserine from the plasma membrane and abrogate K-Ras signaling. Here, we report that low-dose staurosporine and related compounds increase sphingomyelin mass. Mass-spectrometry and metabolic tracer analysis revealed an increase in both the levels and rate of synthesis of sphingomyelin in response to sublethal staurosporine. Mechanistically, it was determined that the abundance of the ORMDL proteins, which negatively regulate serine-palmitoyltransferase, are decreased by low-dose staurosporine...
November 2, 2016: Scientific Reports
Linyu Zhu, Xiahui Xiong, Yongsoon Kim, Naomi Okada, Fei Lu, Hui Zhang, Hong Sun
Receptor tyrosine kinases (RTKs) are embedded in the lipid bilayer of the plasma membrane, but the specific roles of various lipids in cell signaling remain largely uncharacterized. We have previously found that acid sphingomyelinase (ASM; also known as SMPD1) regulates the conserved DAF-2 (the ortholog IGF-1R in mammals) RTK signaling pathway in Caenorhabditis elegans How ASM and its catalytic products, ceramides, control RTK signaling pathways remain unclear. Here, we report that ASM regulates the homeostasis of Met, an RTK that is frequently overexpressed in various cancers...
November 15, 2016: Journal of Cell Science
Nicolas Coant, Wataru Sakamoto, Cungui Mao, Yusuf A Hannun
Over the past three decades, extensive research has been able to determine the biologic functions for the main bioactive sphingolipids, namely ceramide, sphingosine, and sphingosine 1-phosphate (S1P) (Hannun, 1996; Hannun et al., 1986; Okazaki et al., 1989). These studies have managed to define the metabolism, regulation, and function of these bioactive sphingolipids. This emerging body of literature has also implicated bioactive sphingolipids, particularly S1P and ceramide, as key regulators of cellular homeostasis...
October 11, 2016: Advances in Biological Regulation
Lelin Hu, Hao Wang, Li Huang, Yong Zhao, Junjie Wang
Autophagy induced by radiation is critical to cell fate decision. Evidence now sheds light on the importance of autophagy induced by cancer radiotherapy. Traditional view considers radiation can directly or indirectly damage DNA which can activate DNA damage the repair signaling pathway, a large number of proteins participating in DNA damage repair signaling pathway such as p53, ATM, PARP1, FOXO3a, mTOR and SIRT1 involved in autophagy regulation. However, emerging recent evidence suggests radiation can also cause injury to extranuclear targets such as plasma membrane, mitochondria and endoplasmic reticulum (ER) and induce accumulation of ceramide, ROS, and Ca2+ concentration which activate many signaling pathways to modulate autophagy...
December 2016: International Journal of Oncology
Birol Cabukusta, Jan A Köhlen, Christian P Richter, Changjiang You, Joost C M Holthuis
Single-molecule photobleaching has emerged as a powerful non-invasive approach to extract the stoichiometry of multimeric membrane proteins in their native cellular environment. However, this method has mainly been used to determine the subunit composition of ion channels and receptors at the plasma membrane. Here, we applied single-molecule photobleaching to analyze the oligomeric state of an endoplasmic reticulum (ER) resident candidate ceramide sensor protein, SMSr/SAMD8. Co-immunoprecipitation and chemical cross-linking studies previously revealed that the N-terminal sterile alpha motif (or SAM) domain of SMSr drives self-assembly of the protein into oligomers and that SMSr oligomerization is promoted by curcumin, a drug known to perturb ER ceramide and calcium homeostasis...
November 18, 2016: Journal of Biological Chemistry
Virginia Tartaglio, Emilie A Rennie, Rebecca Cahoon, George Wang, Edward Baidoo, Jennifer C Mortimer, Edgar B Cahoon, Henrik V Scheller
Sphingolipids are a major component of plant plasma membranes and endomembranes, and mediate a diverse range of biological processes. Study of the highly glycosylated glycosyl inositol phosphorylceramide (GIPC) sphingolipids, has been slow due to challenges associated with GIPCs' extractability, and their functions in the plant remain poorly characterized. We recently discovered an Arabidopsis GIPC glucuronosyltransferase, INOSITOL PHOSPHORYLCERAMIDE GLUCURONOSYLTRANSFERASE 1 (IPUT1), which is the first enzyme in the GIPC glycosylation pathway...
September 19, 2016: Plant Journal: for Cell and Molecular Biology
Ruo-Xu Gu, Helgi I Ingólfsson, Alex H de Vries, Siewert J Marrink, D Peter Tieleman
Gangliosides are glycolipids in which an oligosaccharide headgroup containing one or more sialic acids is connected to a ceramide. Gangliosides reside in the outer leaflet of the plasma membrane and play a crucial role in various physiological processes such as cell signal transduction and neuronal differentiation by modulating structures and functions of membrane proteins. Because the detailed behavior of gangliosides and protein-ganglioside interactions are poorly known, we investigated the interactions between the gangliosides GM1 and GM3 and the proteins aquaporin (AQP1) and WALP23 using equilibrium molecular dynamics simulations and potential of mean force calculations at both coarse-grained (CG) and atomistic levels...
October 4, 2016: Journal of Physical Chemistry. B
Heidi A Neubauer, Duyen H Pham, Julia R Zebol, Paul A B Moretti, Amanda L Peterson, Tamara M Leclercq, Huasheng Chan, Jason A Powell, Melissa R Pitman, Michael S Samuel, Claudine S Bonder, Darren J Creek, Briony L Gliddon, Stuart M Pitson
While both human sphingosine kinases (SK1 and SK2) catalyze the generation of the pleiotropic signaling lipid sphingosine 1-phosphate, these enzymes appear to be functionally distinct. SK1 has well described roles in promoting cell survival, proliferation and neoplastic transformation. The roles of SK2, and its contribution to cancer, however, are much less clear. Some studies have suggested an anti-proliferative/pro-apoptotic function for SK2, while others indicate it has a pro-survival role and its inhibition can have anti-cancer effects...
October 4, 2016: Oncotarget
Leandro N Ventimiglia, Miguel A Alonso
Exosomes are a particular type of extracellular vesicle, characterized by their endosomal origin as intraluminal vesicles present in large endosomes with a multivesicular structure. After these endosomes fuse with the plasma membrane, exosomes are secreted into the extracellular space. The ability of exosomes to carry and selectively deliver bioactive molecules (e.g., lipids, proteins, and nucleic acids) confers on them the capacity to modulate the activity of receptor cells, even if these cells are located in distant tissues or organs...
2016: Frontiers in Cell and Developmental Biology
Yang Yu, Matej Skočaj, Mateja Erdani Kreft, Nataša Resnik, Peter Veranič, Pietro Franceschi, Kristina Sepčić, Graziano Guella
Comparative lipidomic studies were performed across the RT4 versus T24 urothelial cancer cell lines, as models for noninvasive urothelial papilloma cells (with a relatively high level of differentiation) and invasive urothelial carcinoma cells (with low level of differentiation), respectively. The aim was to investigate the differences in lipid profile associated with different levels of urothelial cancer cell invasiveness. The cellular lipidomes were characterized using our previously developed joint methodology of liquid chromatography-mass spectrometry and high-resolution nuclear magnetic resonance, which included analysis of the phospholipids and ceramide-based glycosphingolipids...
October 18, 2016: Molecular BioSystems
Rosi Bissinger, Elisabeth Lang, Mehrdad Ghashghaeinia, Yogesh Singh, Christine Zelenak, Birgit Fehrenbacher, Sabina Honisch, Hong Chen, Hajar Fakhri, Anja T Umbach, Guilai Liu, Rexhep Rexhepaj, Guoxing Liu, Martin Schaller, Andreas F Mack, Adrian Lupescu, Lutz Birnbaumer, Florian Lang, Syed M Qadri
Putative functions of the heterotrimeric G-protein subunit Gαi2-dependent signaling include ion channel regulation, cell differentiation, proliferation and apoptosis. Erythrocytes may, similar to apoptosis of nucleated cells, undergo eryptosis, characterized by cell shrinkage and cell membrane scrambling with phosphatidylserine (PS) exposure. Eryptosis may be triggered by increased cytosolic Ca(2+) activity and ceramide. In the present study, we show that Gαi2 is expressed in both murine and human erythrocytes and further examined the survival of erythrocytes drawn from Gαi2-deficient mice (Gαi2(-/-)) and corresponding wild-type mice (Gαi2(+/+))...
August 8, 2016: Scientific Reports
Aditi Chaudhari, Liliana Håversen, Reza Mobini, Linda Andersson, Marcus Ståhlman, Emma Lu, Mikael Rutberg, Per Fogelstrand, Kim Ekroos, Adil Mardinoglu, Malin Levin, Rosie Perkins, Jan Borén
Lipid droplet formation, which is driven by triglyceride synthesis, requires several droplet-associated proteins. We identified ARAP2 (an ADP-ribosylation factor 6 GTPase-activating protein) in the lipid droplet proteome of NIH-3T3 cells and showed that knockdown of ARAP2 resulted in decreased lipid droplet formation and triglyceride synthesis. We also showed that ARAP2 knockdown did not affect fatty acid uptake but reduced basal glucose uptake, total levels of the glucose transporter GLUT1, and GLUT1 levels in the plasma membrane and the lipid micro-domain fraction (a specialized plasma membrane domain enriched in sphingolipids)...
November 2016: Biochimica et Biophysica Acta
N I Hanafi, A S Mohamed, J Md Noor, N Abdu, Hamid Hasani, R Siran, N J Osman, S Ab Rahim, S H Sheikh Abdul Kadir
Ursodeoxycholic acid (UDCA) is used to treat liver diseases and demonstrates cardioprotective effects. Accumulation of the plasma membrane sphingolipid sphingomyelin in the heart can lead to atherosclerosis and coronary artery disease. Sphingomyelinases (SMases) break down sphingomyelin, producing ceramide, and inhibition of SMases activity can promote cell survival. We hypothesized that UDCA regulates activation of ERK and Akt survival signaling pathways and SMases in protecting cardiac cells against hypoxia...
June 17, 2016: Genetics and Molecular Research: GMR
Carolyn M Shirey, Katherine E Ward, Robert V Stahelin
Ceramide-1-phosphate (C1P) is an important signaling sphingolipid and a metabolite of ceramide. C1P contains an anionic phosphomonoester head group and has been shown to regulate physiological and pathophysiological processes such as cell proliferation, inflammation, apoptosis, phagocytosis, and macrophage chemotaxis. Despite this mechanistic information on its role in intra- and intercellular communication, little information is available on the biophysical properties of C1P in biological membranes and how it interacts with effector proteins...
October 2016: Chemistry and Physics of Lipids
Chinmay Das, Peter D Olmsted
The stratum corneum (SC), the outermost layer of skin, comprises rigid corneocytes (keratin-filled dead cells) in a specialized lipid matrix. The continuous lipid matrix provides the main barrier against uncontrolled water loss and invasion of external pathogens. Unlike all other biological lipid membranes (such as intracellular organelles and plasma membranes), molecules in the SC lipid matrix show small hydrophilic groups and large variability in the length of the alkyl tails and in the numbers and positions of groups that are capable of forming hydrogen bonds...
July 28, 2016: Philosophical Transactions. Series A, Mathematical, Physical, and Engineering Sciences
Fetch more papers »
Fetching more papers... Fetching...
Read by QxMD. Sign in or create an account to discover new knowledge that matter to you.
Remove bar
Read by QxMD icon Read

Search Tips

Use Boolean operators: AND/OR

diabetic AND foot
diabetes OR diabetic

Exclude a word using the 'minus' sign

Virchow -triad

Use Parentheses

water AND (cup OR glass)

Add an asterisk (*) at end of a word to include word stems

Neuro* will search for Neurology, Neuroscientist, Neurological, and so on

Use quotes to search for an exact phrase

"primary prevention of cancer"
(heart or cardiac or cardio*) AND arrest -"American Heart Association"