Read by QxMD icon Read

Feature engineering

Wing-Fu Lai, Zhen-Dan He
Hydrogels are swellable polymer networks which can imbibe a substantial amount of fluids while retaining their internal network structure. Compared to bulk hydrogels, hydrogel nanoparticles exhibit added values in drug delivery because they can be internalized into cells to deliver pharmaceutical agents into the cytosol. Their large surface area also allows for multivalent conjugations, making optimization of the nanoparticles towards in vivo and clinical applications possible. These features, together with the tunable properties and biocompatibility of hydrogels, account for the widespread use of hydrogel-based nanoparticulate systems in drug formulation...
October 13, 2016: Journal of Controlled Release: Official Journal of the Controlled Release Society
Jianbin Wang, Michael C Holmes
The battle with human immunodeficiency virus (HIV) has been ongoing for more than 30 years, and although progress has been made, there are still significant challenges remaining. A few unique features render HIV to be one of the toughest viruses to conquer in the modern medicine era, such as the ability to target the host immune system, persist by integrating into the host genome and adapt to a hostile environment such as a single anti-HIV medication by continuously evolving. The finding of combination anti-retroviral therapy (cART) about 2 decades ago has transformed the treatment options for HIV-infected patients and significantly improved patient outcomes...
November 2016: Cytotherapy
Neal K Bennett, Rebecca Chmielowski, Dalia S Abdelhamid, Jonathan J Faig, Nicola Francis, Jean Baum, Zhiping P Pang, Kathryn E Uhrich, Prabhas V Moghe
Neuroinflammation, a common neuropathologic feature of neurodegenerative disorders including Parkinson disease (PD), is frequently exacerbated by microglial activation. The extracellular protein α-synuclein (ASYN), whose aggregation is characteristic of PD, remains a key therapeutic target, but the control of synuclein trafficking and aggregation within microglia has been challenging. First, we established that microglial internalization of monomeric ASYN was mediated by scavenger receptors (SR), CD36 and SRA1, and was rapidly accompanied by the formation of ASYN oligomers...
October 4, 2016: Biomaterials
Song Feng, Meritxell Sáez, Carsten Wiuf, Elisenda Feliu, Orkun S Soyer
Bistability, and more generally multistability, is a key system dynamics feature enabling decision-making and memory in cells. Deciphering the molecular determinants of multistability is thus crucial for a better understanding of cellular pathways and their (re)engineering in synthetic biology. Here, we show that a key motif found predominantly in eukaryotic signalling systems, namely a futile signalling cycle, can display bistability when featuring a two-state kinase. We provide necessary and sufficient mathematical conditions on the kinetic parameters of this motif that guarantee the existence of multiple steady states...
October 2016: Journal of the Royal Society, Interface
Laurent Potvin-Trottier, Nathan D Lord, Glenn Vinnicombe, Johan Paulsson
Synthetically engineered genetic circuits can perform a wide variety of tasks but are generally less accurate than natural systems. Here we revisit the first synthetic genetic oscillator, the repressilator, and modify it using principles from stochastic chemistry in single cells. Specifically, we sought to reduce error propagation and information losses, not by adding control loops, but by simply removing existing features. We show that this modification created highly regular and robust oscillations. Furthermore, some streamlined circuits kept 14 generation periods over a range of growth conditions and kept phase for hundreds of generations in single cells, allowing cells in flasks and colonies to oscillate synchronously without any coupling between them...
October 12, 2016: Nature
Suman Rana, Neena G Shetake, K C Barick, B N Pandey, H G Salunke, P A Hassan
The interfacial engineering of magnetic nanoparticles (MNPs) with specific functional groups or targeting ligands is important for their in vivo applications. We report here the preparation and characterization of bifunctional magnetic nanoparticles (BMNPs) which contain a carboxylic moiety for drug binding and an amine moiety for folate mediated drug targeting. BMNPs were prepared by introducing bioactive cysteine molecules onto the surface of undecenoic acid coated Fe3O4 magnetic nanoparticles (UMNPs) via a thiol-ene click reaction and then, folic acid was conjugated with these BMNPs through an EDC-NHS coupling reaction...
October 12, 2016: Dalton Transactions: An International Journal of Inorganic Chemistry
Lingling Fang, Yueliang Wang, Miao Liu, Ming Gong, An Xu, Zhaoxiang Deng
Achieving highly tunable and localized surface plasmon resonance up to near infrared (NIR) regions is a key target in nanoplasmonics. In particular, a self-assembly process capable of producing highly uniform and solution-processable nanomaterials with tailor-made plasmonic properties is lacking. We herein address this problem through a conjunctive use of wet Ag(+) soldering and dry thermal sintering to produce nanodimer-derived structures with precisely engineered charge-transfer plasmon (CTP). The sintered dimers are water soluble, featuring gradually shifted CTP spanning an 800 nm wavelength range (up to NIR II)...
October 12, 2016: Angewandte Chemie
Vanessa Pérez-Silos, Alberto Camacho-Morales, Lizeth Fuentes-Mera
Research on mesenchymal stem cells (MSCs) continues to progress rapidly. Nevertheless, the field faces several challenges, such as inherent cell heterogeneity and the absence of unique MSCs markers. Due to MSCs' ability to differentiate into multiple tissues, these cells represent a promising tool for new cell-based therapies. However, for tissue engineering applications, it is critical to start with a well-defined cell population. Additionally, evidence that MSCs subpopulations may also feature distinct characteristics and regeneration potential has arisen...
2016: Stem Cells International
Junli Huang, Zhaobing Liu, Shiyu Li, Bo Xu, Yahui Gong, Yan Yang, Hanxiao Sun
Although many bacteria are tolerant to heavy metals and play important roles in the immobilization of heavy metals, they cannot always be dependably reproduced under field conditions. In this work, a cadmium (Cd)-resistant bacterium was isolated from a Cd-contaminated oil field and identified as Pseudomonas aeruginosa (Pse-w). We then determined various plant growth promoting features such as the solubilization of phosphate, and the production of indole-3-acetic acid and siderophores. Lastly, we engineered the strain Pse-w-MT by targeting metallothioneins to the cell surface of Pse-w to immobilize Cd(2+) and promote plant growth...
October 3, 2016: Journal of General and Applied Microbiology
Xiao Li, Julio C Armas-Perez, Jose A Martinez-Gonzalez, Xiaoying Liu, Helou Xie, Camille Bishop, Juan P Hernandez-Ortiz, Rui Zhang, Juan J de Pablo, Paul F Nealey
The morphology and through-film optical properties of nematic liquid crystals (LCs) confined between two surfaces may be engineered to create switches that respond to external electric fields, thereby enabling applications in optoelectronics that require fast responses and low power. Interfacial properties between the confining surfaces and the LC play a central role in device design and performance. Here we investigate the morphology of LCs confined in hybrid cells with a top surface that exhibits uniform homeotropic anchoring and a bottom surface that is chemically patterned with sub-micron and micron- wide planar anchoring stripes in a background of homeotropic anchoring...
September 27, 2016: Soft Matter
S Gay, S Orlanducci, D Passeri, M Rossi, M L Terranova
This paper reports on the morphological and electrical characterization at the nanometer scale and the investigation of the field emission characteristics of glassy carbon (GC) plates which underwent H-induced physical/chemical processes occurring in a dual-mode MW-RF plasma reactor. Plasma treatment produced on the GC surface arrays of vertically aligned conically shaped nanostructures, with density and height depending on the plasma characteristics. Two kinds of samples obtained under two different bias regimes have been deeply analyzed using an AFM apparatus equipped with tools for electric forces and surface potential measurements...
September 14, 2016: Physical Chemistry Chemical Physics: PCCP
Shai Mangel, Lothar Houben, Maya Bar Sadan
On the atomic scale, the exact engineering of interfaces affects the overall properties of functional nanostructures. One factor that is considered both fundamental and practical in determining the structural features of interfaces is the lattice mismatch, but zooming into the atomic scale reveals new data, which suggest that this paradigm should be reconsidered. Here, we used advanced transmission electron microscopy techniques to image, with atomic resolution, the core-shell interfaces of a strain-free system (CdSe@CdSe) and of a strain-induced system (CdSe@CdS)...
October 14, 2016: Nanoscale
Manuel Salmerón-Sánchez, Matthew J Dalby
Growth factors (GF) are remarkably powerful signalling molecules that orchestrate developmental biology. GFs are currently used in medical applications with limited success but it is clear that if their potential can be harnessed for biomedicine then they could underpin the discipline of regenerative medicine. However, while we understand that biology uses cell-secreted growth factors tethered to the ECM, biologists typically employ GFs in soluble format at high concentrations. When used in vivo, this causes off-target, unwanted effects, which severely limits their use...
October 6, 2016: Chemical Communications: Chem Comm
Miguel A Soler, Ario de Marco, Sara Fortuna
Nanobodies (VHHs) have proved to be valuable substitutes of conventional antibodies for molecular recognition. Their small size represents a precious advantage for rational mutagenesis based on modelling. Here we address the problem of predicting how Camelidae nanobody sequences can tolerate mutations by developing a simulation protocol based on all-atom molecular dynamics and whole-molecule docking. The method was tested on two sets of nanobodies characterized experimentally for their biophysical features...
October 10, 2016: Scientific Reports
Lang Rao, Zhaobo He, Qian-Fang Meng, Ziyao Zhou, Lin-Lin Bu, Shi-Shang Guo, Wei Liu, Xing-Zhong Zhao
Upconversion nanoparticles (UCNPs), with fascinating optical and chemical features, are a promising new generation of fluorescent probes. Although UCNPs have been widely used in diagnosis and therapy, there is an unmet need for a simple and effective surface engineering method that can produce cancer-targeting UCNPs. Here, we show that by coating particles with macrophage membranes, it becomes possible to utilize the adhesion between macrophages and cancer cells for effective cancer targeting. Natural macrophage membranes along with their associated membrane proteins were reconstructed into vesicles and then coated onto synthetic UCNPs...
October 8, 2016: Journal of Biomedical Materials Research. Part A
Karin V Greco, Lydia Francis, Honglei Huang, Rutger Ploeg, Aldo R Boccaccini, Tahera Ansari
As biocompatible matrices, porcine dermal scaffolds have limited application in tissue engineering due to rapid degradation following implantation. This study compared the physical, chemical, and biomechanical changes that occurred when genipin and quercetin were used to crosslink dermal scaffolds and to determine whether quercetin could be used as an alternative to genipin. Physicochemical changes in the collagen were assessed using spectroscopic methods (XRD and NMR analysis). Crosslinking reaction was evaluated by quantification of amino acids and the degree of this reaction by ninhydrin assay...
October 7, 2016: Journal of Tissue Engineering and Regenerative Medicine
Pengfan Gao, Yuqing Wu, Lixin Wu
The synergistic self-assembly of biomolecules with polyoxometalates (POMs) has recently been considered as an effective approach to construct nano-biomaterials with diverse structures and morphologies towards applications in drug delivery, controlled release, tissue engineering scaffolds, and biomineralization, due to the unique features of the clusters in addition to many well-known inorganic nanoparticles. This review presents an overview of recent work focusing on the noncovalent co-assembly of peptides and POMs as well as their biological applications...
October 5, 2016: Soft Matter
Sergio Santos, Chia-Yun Lai, Carlo A Amadei, Karim R Gadelrab, Tzu-Chieh Tang, Albert Verdaguer, Victor Barcons, Josep Font, Jaime Colchero, Matteo Chiesa
Here we present the Mendeleev-Meyer Force Project which aims at tabulating all materials and substances in a fashion similar to the periodic table. The goal is to group and tabulate substances using nanoscale force footprints rather than atomic number or electronic configuration as in the periodic table. The process is divided into: (1) acquiring nanoscale force data from materials, (2) parameterizing the raw data into standardized input features to generate a library, (3) feeding the standardized library into an algorithm to generate, enhance or exploit a model to identify a material or property...
October 14, 2016: Nanoscale
Christopher F Adams, Andrew W Dickson, Jan-Herman Kuiper, Divya M Chari
Tissue engineering studies are witnessing a major paradigm shift to cell culture on biomimetic materials that replicate native tissue features from which the cells are derived. Few studies have been performed in this regard for neural cells, particularly in nanomedicine. For example, platforms such as magnetic nanoparticles (MNPs) have proven efficient as multifunctional tools for cell tracking and genetic engineering of neural transplant populations. However, as far as we are aware, all current studies have been conducted using neural cells propagated on non-neuromimetic substrates that fail to represent the mechano-elastic properties of brain and spinal cord microenvironments...
October 6, 2016: Nanoscale
Mohammad Raoufi, Neda Aslankoohi, Christine Mollenhauer, Heike Boehm, Joachim P Spatz, Dorothea Brüggemann
Biomedical applications ranging from tissue engineering to drug delivery systems require versatile biomaterials based on the scalable and tunable production of biopolymer nanofibers under physiological conditions. These requirements can be successfully met by a novel extrusion process through nanoporous aluminum oxide templates, which is presented in this study. With this simple method we are able to control the nanofiber diameter by chosing the size of the nanopores and the concentration of the biopolymer feed solution...
October 10, 2016: Integrative Biology: Quantitative Biosciences From Nano to Macro
Fetch more papers »
Fetching more papers... Fetching...
Read by QxMD. Sign in or create an account to discover new knowledge that matter to you.
Remove bar
Read by QxMD icon Read

Search Tips

Use Boolean operators: AND/OR

diabetic AND foot
diabetes OR diabetic

Exclude a word using the 'minus' sign

Virchow -triad

Use Parentheses

water AND (cup OR glass)

Add an asterisk (*) at end of a word to include word stems

Neuro* will search for Neurology, Neuroscientist, Neurological, and so on

Use quotes to search for an exact phrase

"primary prevention of cancer"
(heart or cardiac or cardio*) AND arrest -"American Heart Association"