Read by QxMD icon Read

soil remediation

Hailong Tang, Weitao Shuai, Xiaojing Wang, Yangsheng Liu
Rare earth elements (REEs) contamination to the surrounding soil has increased the concerns of health risk to the local residents. Soil washing was first attempted in our study to remediate REEs-contaminated cropland soil using nitric acid, citric acid, and ethylene diamine tetraacetic acid (EDTA) for soil decontamination and possible recovery of REEs. The extraction time, washing agent concentration, and pH value of the washing solution were optimized. The sequential extraction analysis proposed by Tessier was adopted to study the speciation changes of the REEs before and after soil washing...
October 24, 2016: Environmental Technology
Maryam Bello-Akinosho, Rosina Makofane, Rasheed Adeleke, Mapitsi Thantsha, Michael Pillay, George Johannes Chirima
Restoration of polycyclic aromatic hydrocarbon- (PAH-) polluted sites is presently a major challenge in agroforestry. Consequently, microorganisms with PAH-degradation ability and soil fertility improvement attributes are sought after in order to achieve sustainable remediation of polluted sites. This study isolated PAH-degrading bacteria from enriched cultures of spent automobile engine-oil polluted soil. Isolates' partial 16S rRNA genes were sequenced and taxonomically classified. Isolates were further screened for their soil fertility attributes such as phosphate solubilization, atmospheric nitrogen fixation, and indoleacetic acid (IAA) production...
2016: BioMed Research International
E Vieira Dos Santos, C Sáez, P Cañizares, C A Martínez-Huitle, M A Rodrigo
This study demonstrates the application of reversible electrokinetic adsorption barrier (REKAB) technology to soils spiked with low-solubility pollutants. A permeable reactive barrier (PRB) of granular activated carbon (GAC) was placed between the anode and cathode of an electrokinetic (EK) soil remediation bench-scale setup with the aim of enhancing the removal of two low-solubility herbicides (atrazine and oxyfluorfen) using a surfactant solution (sodium dodecyl sulfate) as the flushing fluid. This innovative study focused on evaluating the interaction between the EK system and the GAC-PRB, attempting to obtain insights into the primary mechanisms involved...
October 17, 2016: Journal of Hazardous Materials
E Vieira Dos Santos, C Sáez, P Cañizares, C A Martínez-Huitle, M A Rodrigo
This works is focused on the treatment by sono-electrolysis of the liquid effluents produced during the Surfactant-Aided Soil-Washing (SASW) of soils spiked with herbicide oxyfluorfen. Results show that this combined technology is very efficient and attains the complete mineralization of the waste, regardless of the surfactant/soil radio applied in the SASW process (which is the main parameter of the soil remediation process and leads to very different wastes). Both the surfactant and the herbicide are completely degraded, even when single electrolysis is used; and only two intermediates are detected by HPLC in very low concentrations...
January 2017: Ultrasonics Sonochemistry
Yooeun Chae, Rongxue Cui, Shin Woong Kim, Gyeonghyeon An, Seung-Woo Jeong, Youn-Joo An
It is essential to remediate or amend soils contaminated with various heavy metals or pollutants so that the soils may be used again safely. Verifying that the remediated or amended soils meet soil quality standards is an important part of the process. We estimated the activity levels of eight soil exoenzymes (acid phosphatase, arylsulfatase, catalase, dehydrogenase, fluorescein diacetate hydrolase, protease, urease, and ß-glucosidase) in contaminated and remediated soils from two sites near a non-ferrous metal smelter, using colorimetric and titrimetric determination methods...
October 20, 2016: Ecotoxicology and Environmental Safety
Canlan Jiang, Yuefei Ji, Yuanyuan Shi, Jifei Chen, Tianming Cai
Widespread occurrence of fluoroquinolone antibiotics (FQs) in surface water, groundwater, soil and sediment has been reported and their remediation is essentially needed. Sulfate radical (SO4(-)) based advanced oxidation processes (SR-AOPs) are promising technologies for soil and groundwater remediation. In this study, the degradation kinetics, mechanisms, and effects of natural water matrices on heat-activated persulfate (PS) oxidation of FQs were systematically investigated. Experimental results clearly demonstrated that 92% of CIP was removed within 180 min (pH = 7, 60 °C)...
October 12, 2016: Water Research
Shanquan Wang, Siyuan Chen, Yu Wang, Adrian Low, Qihong Lu, Rongliang Qiu
Due to massive production and improper handling, organohalide compounds are widely distributed in subsurface environments, primarily in anoxic groundwater, soil and sediment. Compared to traditional pump-and-treat or dredging-and-disposal treatments, in situ remediation employing abiotic or biotic reductive dehalogenation represents a sustainable and economic solution for the removal of organohalide pollutants. Both nanoscale zero-valent iron (nZVI) and organohalide-respiring bacteria remove halogens through reductive dehalogenation and have been extensively studied and successfully applied for the in situ remediation of chloroethenes and other organohalide pollutants...
October 17, 2016: Biotechnology Advances
John F Obrycki, Kirk G Scheckel, Nicholas T Basta
Lead (Pb) contaminated soils are a potential exposure hazard to the public. Amending soils with phosphorus (P) may reduce Pb soil hazards. Soil from Cleveland, OH containing 726 ± 14 mg Pb kg(-1) was amended in a laboratory study with bone meal and triple super phosphate (TSP) at 5:1 P:Pb molar ratios. Soil was acidified, neturalized and re-acidified to encourage Pb phosphate formation. PRSTM-probes were used to evaluate changes in soil solution chemistry. Soil acidification did not decrease in vitro bioaccessible (IVBA) Pb using either a pH 1...
October 14, 2016: Environmental Pollution
Camila L Madeira, Samuel A Speet, Cristina A Nieto, Leif Abrell, Jon Chorover, Reyes Sierra-Alvarez, Jim A Field
Insensitive munitions, such as 3-nitro-1,2,4-triazol-5-one (NTO), are being considered by the U.S. Army as replacements for conventional explosives. Environmental emissions of NTO are expected to increase as its use becomes widespread; but only a few studies have considered the remediation of NTO-contaminated sites. In this study, sequential anaerobic-aerobic biodegradation of NTO was investigated in bioreactors using soil as inoculum. Batch bioassays confirmed microbial reduction of NTO under anaerobic conditions to 3-amino-1,2,4-triazol-5-one (ATO) using pyruvate as electron-donating cosubstrate...
October 14, 2016: Chemosphere
Haipeng Wu, Cui Lai, Guangming Zeng, Jie Liang, Jin Chen, Jijun Xu, Juan Dai, Xiaodong Li, Junfeng Liu, Ming Chen, Lunhui Lu, Liang Hu, Jia Wan
Compost and biochar, used for the remediation of soil, are seen as attractive waste management options for the increasing volume of organic wastes being produced. This paper reviews the interaction of biochar and composting and its implication for soil amendment and pollution remediation. The interaction of biochar and composting affect each other's properties. Biochar could change the physico-chemical properties, microorganisms, degradation, humification and gas emission of composting, such as the increase of nutrients, cation exchange capacity (CEC), organic matter and microbial activities...
October 17, 2016: Critical Reviews in Biotechnology
Nadeesha H Koralegedara, Souhail R Al-Abed, Sanjeewa K Rodrigo, Ranju R Karna, Kirk G Scheckel, Dionysios D Dionysiou
This is the first study to evaluate the potential application of FGDG as an in situ Pb stabilizer in contaminated soils with two different compositions and to explain the underlying mechanisms. A smelter Pb contaminated soil (SM-soil), rich in ferrihydrite bound Pb (FH-Pb), cerussite and litharge with a total Pb content of 65,123mg/kg and an organic matter rich orchard soil (BO-soil), rich in FH-Pb and humic acid bound Pb with a total Pb content of 1532mg/kg were amended with 5% FGDG (w/w). We subjected the two soils to three leaching tests; toxicity characteristic leaching protocol (TCLP), synthetic precipitation leaching protocol (SPLP), kinetic batch leaching test (KBLT) and in-vitro bioaccessibility assay (IVBA) in order to evaluate the FGDG amendment on Pb stabilization...
October 13, 2016: Science of the Total Environment
Ouarda Merdoud, Claudio Cameselle, Mohamed Oualid Boulakradeche, Djamal Eddine Akretche
The soil from an industrial area in Algeria was contaminated with Cr (8370 mg kg(-1)), Ni (1135 mg kg(-1)) and zinc (1200 mg kg(-1)). The electrodialytic remediation of this soil was studied using citric acid and EDTA as facilitating agents. 0.1 M citric acid or EDTA was added directly to the soil before it was introduced in an electrodialytic cell in an attempt to enhance the heavy metal solubility in the interstitial fluid. The more acidic pH in the soil when citric acid was used as the facilitating agent was not enough to mobilize and remove the metals from the soil...
October 14, 2016: Environmental Science. Processes & Impacts
Ying Teng, Shijiang Feng, Wenjie Ren, Lingjia Zhu, Wenting Ma, Peter Christie, Yongming Luo
A pot experiment was conducted to explore the phytoremediation of a diphenylarsinic acid (DPAA) spiked soil using Pteris vittata associated with exogenous Phyllobacterium myrsinacearum RC6b. Removal of DPAA from the soil, soil enzyme activities and the functional diversity of the soil microbial community were evaluated. DPAA concentrations in soil treated with the fern or the bacterium were 35-47% lower than that in the control and were lowest in soil treated with P. vittata and P. myrsinacearum together. The presence of the bacterium added in the soil significantly increased the plant growth and DPAA accumulation...
October 14, 2016: International Journal of Phytoremediation
G Dąbrowska, K Hrynkiewicz, A Trejgell, C Baum
The test strains Bacteroidetes bacterium (Ba), Pseudomonas fluorescens (Pf) and Variovorax sp. (Va) were selected in advance for their in vitro capability for growth promotion of rapeseed in the presence of increased concentrations of Cd, Cu, Pb and Zn in the medium. In the pot experiment the strains were used for single Ba, Pf, Va or combined Ba+Pf, Ba+Va, Pf+Va, Ba+Pf+Va inoculation of B. napus growing in contaminated soil from alluvial deposits. The positive effect of bacterial strains on plant growth was observed in vitro, but was not confirmed in situ in the contaminated soil, where the tested strains inhibited biomass production, rather than stimulating it...
October 14, 2016: International Journal of Phytoremediation
Uhram Song
To increase the remediation ability and life expectancy of a leachate channel in a sanitary landfill, the plants used for remediation were composted as a post-remediation management technique. Phragmites australis or Typha angustifolia used for phytoremediation in a landfill leachate channel was harvested and used as a co-composting material with sewage sludge. The macrophyte compost was applied to the slope of a landfill on which plants were introduced for revegetation and to plants grown in pots to test for acute effects of the compost...
October 14, 2016: International Journal of Phytoremediation
Weijun Tian, Jing Zhao, Yuhang Zhou, Kaili Qiao, Xin Jin, Qing Liu
Changes in root exudates, including low molecular weight organic acids (LMWOAs), amino acids and sugars, in rhizosphere soils during the gel-beads/reeds combination remediation for high molecular weight polycyclic aromatic hydrocarbons (HMW-PAHs) and the degree of the effects on HMW-PAH biodegradation were evaluated in this study. The results showed that the gel-beads/reeds combination remediation notably increased the removal rates of pyrene, benzo(a)pyrene and indeno(1,2,3-cd)pyrene (65.0-68.9%, 60.0-68.5% and 85...
October 10, 2016: Ecotoxicology and Environmental Safety
Laura Delgado-Balbuena, Juan M Bello-López, Yendi E Navarro-Noya, Analine Rodríguez-Valentín, Marco L Luna-Guido, Luc Dendooven
Mixing soil or adding earthworms (Eisenia fetida (Savigny, 1826)) accelerated the removal of anthracene, a polycyclic aromatic hydrocarbon, from a pasture and an arable soil, while a non-ionic surfactant (Surfynol® 485) inhibited the removal of the contaminant compared to the untreated soil. It was unclear if the treatments affected the soil bacterial community and consequently the removal of anthracene. Therefore, the bacterial community structure was monitored by means of 454 pyrosequencing of the 16S rRNA gene in the pasture and arable soil mixed weekly, amended with Surfynol® 485, E...
2016: PloS One
Shelly Sharma, Partap Bir Singh, Pooja Chadha, Harvinder Singh Saini
The study was aimed to evaluate the levels of chlorpyrifos (CPF) pollution in agricultural soil of Punjab, India, its detrimental effects on acetylcholinesterase (AChE) activity in rat brain and bioremediation of soils polluted with CPF using indigenous and adapted bacterial lab isolate. The analysis revealed that soil samples of Bathinda and Amritsar regions are highly contaminated with chlorpyrifos showing 19 to 175 mg/kg concentrations of CPF. The non-targeted animals may get poisoned with CPF by its indirect dermal absorption, inhalation of toxic fumes and regular consumption of soiled food grains...
October 8, 2016: Environmental Science and Pollution Research International
José Marrugo-Negrete, Germán Enamorado-Montes, José Durango-Hernández, José Pinedo-Hernández, Sergi Díez
Phytoremediation has received increased attention over the recent decades, as an emerging and eco-friendly approach that utilizes the natural properties of plants to remediate contaminated water, soils or sediments. The current study provides information about a pilot-scale experiment designed to evaluate the potential of the anchored aquatic plant Limnocharis flava for phytoremediation of water contaminated with mercury (Hg), in a constructed wetland (CW) with horizontal subsurface flow (HSSF). Mine effluent used in this experiment was collected from a gold mining area located at the Alacran mine in Colombia (Hg: 0...
October 5, 2016: Chemosphere
Lorenzo Vergani, Francesca Mapelli, Elisabetta Zanardini, Elisa Terzaghi, Antonio Di Guardo, Cristiana Morosini, Giuseppe Raspa, Sara Borin
Polychlorinated biphenyls (PCBs) are toxic chemicals, recalcitrant to degradation, bioaccumulative and persistent in the environment, causing adverse effects on ecosystems and human health. For this reason, the remediation of PCB-contaminated soils is a primary issue to be addressed. Phytoremediation represents a promising tool for in situ soil remediation, since the available physico-chemical technologies have strong environmental and economic impacts. Plants can extract and metabolize several xenobiotics present in the soil, but their ability to uptake and mineralize PCBs is limited due to the recalcitrance and low bioavailability of these molecules that in turn impedes an efficient remediation of PCB-contaminated soils...
October 5, 2016: Science of the Total Environment
Fetch more papers »
Fetching more papers... Fetching...
Read by QxMD. Sign in or create an account to discover new knowledge that matter to you.
Remove bar
Read by QxMD icon Read

Search Tips

Use Boolean operators: AND/OR

diabetic AND foot
diabetes OR diabetic

Exclude a word using the 'minus' sign

Virchow -triad

Use Parentheses

water AND (cup OR glass)

Add an asterisk (*) at end of a word to include word stems

Neuro* will search for Neurology, Neuroscientist, Neurological, and so on

Use quotes to search for an exact phrase

"primary prevention of cancer"
(heart or cardiac or cardio*) AND arrest -"American Heart Association"