Read by QxMD icon Read


Yujie Xiao, Hailing Nie, Huizhong Liu, Wenli Chen, Qiaoyun Huang
Cyclic di-GMP (c-di-GMP), a ubiquitous bacterial second messenger that regulates diverse cellular processes, is synthesized by diguanylate cyclase (DGC) and degraded by phosphodiesterase (PDE). GcbA is a well conserved DGC among Pseudomonas species, and has been reported to influence biofilm formation and flagellar motility in Pseudomonas fluorescens and Pseudomonas aeruginosa. Here we confirm the function of GcbA in Pseudomonas putida and reveal that expression of GcbA is regulated by FleQ in response to c-di-GMP...
October 4, 2016: Environmental Microbiology Reports
Gracjana Klein, Anna Stupak, Daria Biernacka, Pawel Wojtkiewicz, Buko Lindner, Satish Raina
The RpoE sigma factor is essential for the viability of Escherichia coli RpoE regulates extracytoplasmic functions including lipopolysaccharide (LPS) translocation and some of its non-stoichiometric modifications. Transcription of the rpoE gene is positively autoregulated by Eσ(E) and by unknown mechanisms that control the expression of its distally located promoter(s). Mapping of 5' ends of rpoE mRNA identified five new transcriptional initiation sites (P1 to P5) located distal to Eσ(E)-regulated promoter...
September 14, 2016: Journal of Biological Chemistry
Woongjae Yoo, Hyunjin Yoon, Yeong-Jae Seok, Chang-Ro Lee, Hyung Ho Lee, Sangryeol Ryu
The nitrogen-metabolic phosphotransferase system, PTS(Ntr), consists of the enzymes I(Ntr), NPr and IIA(Ntr) that are encoded by ptsP, ptsO, and ptsN, respectively. Due to the proximity of ptsO and ptsN to rpoN, the PTS(Ntr) system has been postulated to be closely related with nitrogen metabolism. To define the correlation between PTS(Ntr) and nitrogen metabolism, we performed ligand fishing with EIIA(Ntr) as a bait and revealed that D-glucosamine-6-phosphate synthase (GlmS) directly interacted with EIIA(Ntr)...
2016: Scientific Reports
Olga V Tsoy, Dmitry A Ravcheev, Jelena Čuklina, Mikhail S Gelfand
Biological nitrogen fixation plays a crucial role in the nitrogen cycle. An ability to fix atmospheric nitrogen, reducing it to ammonium, was described for multiple species of Bacteria and Archaea. The transcriptional regulatory network for nitrogen fixation was extensively studied in several representatives of the class Alphaproteobacteria. This regulatory network includes the activator of nitrogen fixation NifA, working in tandem with the alternative sigma-factor RpoN as well as oxygen-responsive regulatory systems, one-component regulators FnrN/FixK and two-component system FixLJ...
2016: Frontiers in Microbiology
Christine E Hartman, David J Samuels, Anna C Karls
Transcription sigma factors direct the selective binding of RNA polymerase holoenzyme (Eσ) to specific promoters. Two families of sigma factors determine promoter specificity, the σ(70) (RpoD) family and the σ(54) (RpoN) family. In transcription controlled by σ(54), the Eσ(54)-promoter closed complex requires ATP hydrolysis by an associated bacterial enhancer-binding protein (bEBP) for the transition to open complex and transcription initiation. Given the wide host range of Salmonella enterica serovar Typhimurium, it is an excellent model system for investigating the roles of RpoN and its bEBPs in modulating the lifestyle of bacteria...
2016: Frontiers in Molecular Biosciences
ShanShan Song, Yuanyuan Xue, Enfu Liu, Keping Wang, Yuanxing Zhang, Haizhen Wu, Huizhan Zhang
Sigma factors are important regulators that bacteria employ to cope with environmental changes. Studies on the functions of sigma factors have uncovered their roles in many important cellular activities, such as growth, stress tolerance, motility, biofilm formation, and virulence. However, comparative analyses of sigma factors that examine their common and unique features or elucidate their cross-regulatory relationships have rarely been conducted for Edwardsiella tarda. Here, we characterized and compared motility and resistance to oxidative stress of E...
October 2016: Canadian Journal of Microbiology
Sébastien Bontemps-Gallo, Kevin Lawrence, Frank C Gherardini
Lyme disease, caused by Borrelia burgdorferi, is a vector-borne illness that requires the bacteria to adapt to distinctly different environments in its tick vector and various mammalian hosts. Effective colonization (acquisition phase) of a tick requires the bacteria to adapt to tick midgut physiology. Successful transmission (transmission phase) to a mammal requires the bacteria to sense and respond to the midgut environmental cues and up-regulate key virulence factors before transmission to a new host. Data presented here suggest that one environmental signal that appears to affect both phases of the infective cycle is osmolarity...
August 2016: PLoS Pathogens
Darija Viducic, Keiji Murakami, Takashi Amoh, Tsuneko Ono, Yoichiro Miyake
The ability of Pseudomonas aeruginosa to rapidly modulate its response to antibiotic stress and persist in the presence of antibiotics is closely associated with the process of cell-to-cell signaling. The alternative sigma factor RpoN (σ(54)) is involved in the regulation of quorum sensing (QS) and plays an important role in the survival of stationary-phase cells in the presence of carbapenems. Here, we demonstrate that a ΔrpoN mutant grown in nutrient-rich medium has increased expression of pqsA, pqsH, and pqsR throughout growth, resulting in the increased production of the Pseudomonas quinolone signal (PQS)...
October 2016: Antimicrobial Agents and Chemotherapy
Yuhua Zhan, Yongliang Yan, Zhiping Deng, Ming Chen, Wei Lu, Chao Lu, Liguo Shang, Zhimin Yang, Wei Zhang, Wei Wang, Yun Li, Qi Ke, Jiasi Lu, Yuquan Xu, Liwen Zhang, Zhihong Xie, Qi Cheng, Claudine Elmerich, Min Lin
Unlike most Pseudomonas, the root-associated bacterium Pseudomonas stutzeri A1501 fixes nitrogen after the horizontal acquisition of a nitrogen-fixing (nif) island. A genome-wide search for small noncoding RNAs (ncRNAs) in P. stutzeri A1501 identified the novel P. stutzeri-specific ncRNA NfiS in the core genome, whose synthesis was significantly induced under nitrogen fixation or sorbitol stress conditions. The expression of NfiS was RNA chaperone Hfq-dependent and activated by the sigma factor RpoN/global nitrogen activator NtrC/nif-specific activator NifA regulatory cascade...
July 26, 2016: Proceedings of the National Academy of Sciences of the United States of America
Benjamin R Lundgren, Zaara Sarwar, Atahualpa Pinto, Jack G Ganley, Christopher T Nomura
UNLABELLED: Although genes encoding enzymes and proteins related to ethanolamine catabolism are widely distributed in the genomes of Pseudomonas spp., ethanolamine catabolism has received little attention among this metabolically versatile group of bacteria. In an attempt to shed light on this subject, this study focused on defining the key regulatory factors that govern the expression of the central ethanolamine catabolic pathway in Pseudomonas aeruginosa PAO1. This pathway is encoded by the PA4022-eat-eutBC operon and consists of a transport protein (Eat), an ethanolamine-ammonia lyase (EutBC), and an acetaldehyde dehydrogenase (PA4022)...
September 1, 2016: Journal of Bacteriology
Danna R Gifford, Macarena Toll-Riera, R Craig MacLean
The idea that interactions between mutations influence adaptation by driving populations to low and high fitness peaks on adaptive landscapes is deeply ingrained in evolutionary theory. Here, we investigate the impact of epistasis on evolvability by challenging populations of two Pseudomonas aeruginosa clones bearing different initial mutations (in rpoB conferring rifampicin resistance, and the type IV pili gene network) to adaptation to a medium containing l-serine as the sole carbon source. Despite being initially indistinguishable in fitness, populations founded by the two ancestral genotypes reached different fitness following 300 generations of evolution...
July 2016: Evolution; International Journal of Organic Evolution
Yanping Yin, Youyun Yang, Xuwu Xiang, Qian Wang, Zhang-Nv Yang, Jon Blevins, Yongliang Lou, X Frank Yang
UNLABELLED: It is well established that the RpoN-RpoS sigma factor (σ(54)-σ(S)) cascade plays an essential role in differential gene expression during the enzootic cycle of Borrelia burgdorferi, the causative agent of Lyme disease. The RpoN-RpoS pathway is activated by the response regulator/σ(54)-dependent activator (also called bacterial enhancer-binding protein [bEBP]) Rrp2. One unique feature of Rrp2 is that this activator is essential for cell replication, whereas RpoN-RpoS is dispensable for bacterial growth...
May 15, 2016: Journal of Bacteriology
Aitor de Las Heras, Esteban Martínez-García, Maria Rosa Domingo-Sananes, Sofia Fraile, Víctor de Lorenzo
The XylR/Pu regulatory node of the m-xylene biodegradation pathway of Pseudomonas putida mt-2 is one of the most intricate cases of processing internal and external cues into a single controlling element. Despite this complexity, the performance of the regulatory system is determined in vivo only by the occupation of Pu by m-xylene-activated XylR and σ(54)-RNAP. The stoichiometry between these three elements defines natural system boundaries that outline a specific functional space. This space can be expanded artificially following different strategies that involve either the increase of XylR or σ(54) or both elements at the same time (each using a different inducer)...
April 18, 2016: Integrative Biology: Quantitative Biosciences From Nano to Macro
Irene N Kasumba, Aaron Bestor, Kit Tilly, Patricia A Rosa
BACKGROUND: Borrelia burgdorferi, the tick-transmitted agent of Lyme disease, adapts to different environments as it cycles between an arthropod vector and vertebrate host. Signals encountered during nymphal tick feeding prior to transmission activate a regulon that is controlled by the alternative sigma factors RpoN and RpoS, which are required for mammalian infection. The ingested bloodmeal also provides nutrients that stimulate spirochete replication. Although the influence of tick feeding on spirochete growth and gene expression is well documented, a quantitative assessment of spirochete virulence before and after tick feeding has not been made...
2016: Parasites & Vectors
Duong Thi Hong Diep, Nguyen Thi Thanh Phuong, Mya Myintzu Hlaing, Potjanee Srimanote, Sumalee Tungpradabkul
Burkholderia pseudomallei is the causative agent of melioidosis. The complete genome sequences of this pathogen have been revealed, which explain some pathogenic mechanisms. In various hostile conditions, for example, during nitrogen and amino acid starvation, bacteria can utilize alternative sigma factors such as RpoS and RpoN to modulate genes expression for their adaptation and survival. In this study, we demonstrate that mutagenesis of rpoN2, which lies on chromosome 2 of B. pseudomallei and encodes a homologue of the sigma factor RpoN, did not alter nitrogen and amino acid utilization of the bacterium...
2015: International Journal of Bacteriology
Leonard Koolman, Paul Whyte, Catherine Burgess, Declan Bolton
Studies were undertaken to investigate the effect of oxidative stress conditions (exposure to hydrogen peroxide, H2O2) on [1] the expression of 14 Campylobacter jejuni virulence-associated genes associated with motility and/or invasion (flaA, flaB, flhA, flhB, ciaB, iamA), adhesion (cadF), cytotoxin production (cdtA, cdtB, cdtC) as well as some of the regulators of these genes (rpoN, fliA, luxS, cj1000), in 10 C. jejuni strains (5 poultry and 5 human) and [2] the ability of these cells to adhere to and invade Caco-2 cells...
March 2, 2016: International Journal of Food Microbiology
Kai Jiang, Yanfen Xue, Yanhe Ma
Salinicoccus halodurans H3B36 is a moderate halophile that was isolated from a 3.2-m-deep sediment sample in Qaidam Basin, China. Our results suggest that N(α)-acetyl-α-lysine can accumulate and act as a probable thermolyte in this strain. The accumulation mechanism and biosynthetic pathway for this rare compatible solute were also elucidated. We confirmed that the de novo synthesis pathway of N(α)-acetyl-α-lysine in this strain starts from aspartate and passes through lysine. Through RNA sequencing, we also found an 8-gene cluster (orf_1582-1589) and another gene (orf_2472) that might encode the biosynthesis of N(α)-acetyl-α-lysine in S...
2015: Scientific Reports
Crystal L Richards, Kevin A Lawrence, Hua Su, Youyun Yang, X Frank Yang, Daniel P Dulebohn, Frank C Gherardini
In B. burgdorferi, the Rrp2-RpoN-RpoS signaling cascade is a distinctive system that coordinates the expression of virulence factors required for successful transition between its arthropod vector and mammalian hosts. Rrp2 (BB0763), an RpoN specific response regulator, is essential to activate this regulatory pathway. Previous investigations have attempted to identify the phosphate donor of Rrp2, including the cognate histidine kinase, Hk2 (BB0764), non-cognate histidine kinases such as Hk1, CheA1, and CheA2, and small molecular weight P-donors such as carbamoyl-phosphate and acetyl-phosphate (AcP)...
2015: PloS One
Benjamin R Lundgren, Morgan P Connolly, Pratibha Choudhary, Tiffany S Brookins-Little, Snigdha Chatterjee, Ramesh Raina, Christopher T Nomura
The alternative sigma factor RpoN is a unique regulator found among bacteria. It controls numerous processes that range from basic metabolism to more complex functions such as motility and nitrogen fixation. Our current understanding of RpoN function is largely derived from studies on prototypical bacteria such as Escherichia coli. Bacillus subtilis and Pseudomonas putida. Although the extent and necessity of RpoN-dependent functions differ radically between these model organisms, each bacterium depends on a single chromosomal rpoN gene to meet the cellular demands of RpoN regulation...
2015: PloS One
Zhao Cai, Yang Liu, Yicai Chen, Joey Kuok Hoong Yam, Su Chuen Chew, Song Lin Chua, Ke Wang, Michael Givskov, Liang Yang
The alternative sigma factor RpoN regulates many cell functions, such as motility, quorum sensing, and virulence in the opportunistic pathogen Pseudomonas aeruginosa (P. aeruginosa). P. aeruginosa often evolves rpoN-negative variants during the chronic infection in cystic fibrosis patients. It is unclear how RpoN interacts with other regulatory mechanisms to control virulence of P. aeruginosa. In this study, we show that RpoN modulates the function of PqsR, a quorum sensing receptor regulating production of virulence factors including the phenazine pyocyanin...
2015: International Journal of Molecular Sciences
Fetch more papers »
Fetching more papers... Fetching...
Read by QxMD. Sign in or create an account to discover new knowledge that matter to you.
Remove bar
Read by QxMD icon Read

Search Tips

Use Boolean operators: AND/OR

diabetic AND foot
diabetes OR diabetic

Exclude a word using the 'minus' sign

Virchow -triad

Use Parentheses

water AND (cup OR glass)

Add an asterisk (*) at end of a word to include word stems

Neuro* will search for Neurology, Neuroscientist, Neurological, and so on

Use quotes to search for an exact phrase

"primary prevention of cancer"
(heart or cardiac or cardio*) AND arrest -"American Heart Association"