Read by QxMD icon Read

RiPPS,genome mining

Michael A Skinnider, Chad W Johnston, Robyn E Edgar, Chris A Dejong, Nishanth J Merwin, Philip N Rees, Nathan A Magarvey
Microbial natural products are an evolved resource of bioactive small molecules, which form the foundation of many modern therapeutic regimes. Ribosomally synthesized and posttranslationally modified peptides (RiPPs) represent a class of natural products which have attracted extensive interest for their diverse chemical structures and potent biological activities. Genome sequencing has revealed that the vast majority of genetically encoded natural products remain unknown. Many bioinformatic resources have therefore been developed to predict the chemical structures of natural products, particularly nonribosomal peptides and polyketides, from sequence data...
October 3, 2016: Proceedings of the National Academy of Sciences of the United States of America
Osmel Fleitas Martinez, Caleb Mawuli Agbale, Fernanda Nomiyama, Octávio Luiz Franco
Bioactive peptides such as antimicrobial peptides (AMPs), ribosomally synthesized and post translationally modified peptides (RiPPs) and the non-ribosomal peptides (NRPs) have emerged with promising applications in medicine, agriculture and industry. However, their development has been limited by several difficulties making it necessary to search for novel discovery methods. In this context, proteomics has been considered a reliable tool. Areas covered: This review highlights recent developments in proteomic tools that facilitate the discovery of AMPs, RiPPs and NRPs as well as the elucidation of action mechanisms of AMPs and resistance mechanisms of pathogens to them...
October 8, 2016: Expert Review of Proteomics
Xiling Zhao, Wilfred A van der Donk
The discovery of new ribosomally synthesized and post-translationally modified peptide natural products (RiPPs) has greatly benefitted from the influx of genomic information. The lanthipeptides are a subset of this class of compounds. Adopting the genome-mining approach revealed a novel lanthipeptide gene cluster encoded in the genome of Ruminococcus flavefaciens FD-1, an anaerobic bacterium that is an important member of the rumen microbiota of livestock. The post-translationally modified peptides were produced via heterologous expression in Escherichia coli...
February 18, 2016: Cell Chemical Biology
Wei Ding, Wan-Qiu Liu, Youli Jia, Yongzhen Li, Wilfred A van der Donk, Qi Zhang
Production of ribosomally synthesized and posttranslationally modified peptides (RiPPs) has rarely been reported in fungi, even though organisms of this kingdom have a long history as a prolific source of natural products. Here we report an investigation of the phomopsins, antimitotic mycotoxins. We show that phomopsin is a fungal RiPP and demonstrate the widespread presence of a pathway for the biosynthesis of a family of fungal cyclic RiPPs, which we term dikaritins. We characterize PhomM as an S-adenosylmethionine-dependent α-N-methyltransferase that converts phomopsin A to an N,N-dimethylated congener (phomopsin E), and show that the methyltransferases involved in dikaritin biosynthesis have evolved differently and likely have broad substrate specificities...
March 29, 2016: Proceedings of the National Academy of Sciences of the United States of America
Courtney L Cox, James R Doroghazi, Douglas A Mitchell
BACKGROUND: Ribosomally synthesized and post-translationally modified peptides (RiPPs) are a burgeoning class of natural products with diverse activity that share a similar origin and common features in their biosynthetic pathways. The precursor peptides of these natural products are ribosomally produced, upon which a combination of modification enzymes installs diverse functional groups. This genetically encoded peptide-based strategy allows for rapid diversification of these natural products by mutation in the precursor genes merged with unique combinations of modification enzymes...
2015: BMC Genomics
Somayah S Elsayed, Franziska Trusch, Hai Deng, Andrea Raab, Ivan Prokes, Kanungnid Busarakam, Juan A Asenjo, Barbara A Andrews, Pieter van West, Alan T Bull, Michael Goodfellow, Yu Yi, Rainer Ebel, Marcel Jaspars, Mostafa E Rateb
Lasso peptides are ribosomally synthesized and post-translationally modified peptides (RiPPs) that possess a unique "lariat knot" structural motif. Genome mining-targeted discovery of new natural products from microbes obtained from extreme environments has led to the identification of a gene cluster directing the biosynthesis of a new lasso peptide, designated as chaxapeptin 1, in the genome of Streptomyces leeuwenhoekii strain C58 isolated from the Atacama Desert. Subsequently, 1 was isolated and characterized using high-resolution electrospray ionization mass spectrometry and nuclear magnetic resonance methods...
October 16, 2015: Journal of Organic Chemistry
Julian D Hegemann, Marcel Zimmermann, Xiulan Xie, Mohamed A Marahiel
Natural products of peptidic origin often represent a rich source of medically relevant compounds. The synthesis of such polypeptides in nature is either initiated by deciphering the genetic code on the ribosome during the translation process or driven by ribosome-independent processes. In the latter case, highly modified bioactive peptides are assembled by multimodular enzymes designated as nonribosomal peptide synthetases (NRPS) that act as a protein-template to generate chemically diverse peptides. On the other hand, the ribosome-dependent strategy, although relying strictly on the 20-22 proteinogenic amino acids, generates structural diversity by extensive post-translational-modification...
July 21, 2015: Accounts of Chemical Research
Noah A Bindman, Silvia C Bobeica, Wenshe R Liu, Wilfred A van der Donk
The biosynthesis of ribosomally synthesized and post-translationally modified peptide (RiPP) natural products typically involves a precursor peptide which contains a leader peptide that is important for the modification process, and that is removed in the final step by a protease. Genome mining efforts for new RiPPs are often hampered by the lack of a general method to remove the leader peptides. We describe here the incorporation of hydroxy acids into the precursor peptides in E. coli which results in connection of the leader peptide via an ester linkage that is readily cleaved by simple hydrolysis...
June 10, 2015: Journal of the American Chemical Society
Anne-Catrin Letzel, Sacha J Pidot, Christian Hertweck
BACKGROUND: Ribosomally synthesized and post-translationally modified peptides (RiPPs) are a diverse group of biologically active bacterial molecules. Due to the conserved genomic arrangement of many of the genes involved in their synthesis, these secondary metabolite biosynthetic pathways can be predicted from genome sequence data. To date, however, despite the myriad of sequenced genomes covering many branches of the bacterial phylogenetic tree, such an analysis for a broader group of bacteria like anaerobes has not been attempted...
2014: BMC Genomics
Qi Zhang, Xiao Yang, Huan Wang, Wilfred A van der Donk
Lanthionine-containing peptides (lanthipeptides) are a rapidly growing family of polycyclic peptide natural products belonging to the large class of ribosomally synthesized and post-translationally modified peptides (RiPPs). These compounds are widely distributed in taxonomically distant species, and their biosynthetic systems and biological activities are diverse. A unique example of lanthipeptide biosynthesis is the prochlorosin synthetase ProcM from the marine cyanobacterium Prochlorococcus MIT9313, which transforms up to 29 different precursor peptides (ProcAs) into a library of lanthipeptides called prochlorosins (Pcns) with highly diverse sequences and ring topologies...
November 21, 2014: ACS Chemical Biology
Hosein Mohimani, Roland D Kersten, Wei-Ting Liu, Mingxun Wang, Samuel O Purvine, Si Wu, Heather M Brewer, Ljiljana Pasa-Tolic, Nuno Bandeira, Bradley S Moore, Pavel A Pevzner, Pieter C Dorrestein
Ribosomally synthesized and posttranslationally modified peptides (RiPPs), especially from microbial sources, are a large group of bioactive natural products that are a promising source of new (bio)chemistry and bioactivity.1 In light of exponentially increasing microbial genome databases and improved mass spectrometry (MS)-based metabolomic platforms, there is a need for computational tools that connect natural product genotypes predicted from microbial genome sequences with their corresponding chemotypes from metabolomic data sets...
July 18, 2014: ACS Chemical Biology
Auke J van Heel, Anne de Jong, Manuel Montalbán-López, Jan Kok, Oscar P Kuipers
Identifying genes encoding bacteriocins and ribosomally synthesized and posttranslationally modified peptides (RiPPs) can be a challenging task. Especially those peptides that do not have strong homology to previously identified peptides can easily be overlooked. Extensive use of BAGEL2 and user feedback has led us to develop BAGEL3. BAGEL3 features genome mining of prokaryotes, which is largely independent of open reading frame (ORF) predictions and has been extended to cover more (novel) classes of posttranslationally modified peptides...
July 2013: Nucleic Acids Research
Juan E Velásquez, Wilfred A van der Donk
In recent years, the number of known peptide natural products that are synthesized via the ribosomal pathway has rapidly grown. Taking advantage of sequence homology among genes encoding precursor peptides or biosynthetic proteins, in silico mining of genomes combined with molecular biology approaches has guided the discovery of a large number of new ribosomal natural products, including lantipeptides, cyanobactins, linear thiazole/oxazole-containing peptides, microviridins, lasso peptides, amatoxins, cyclotides, and conopeptides...
February 2011: Current Opinion in Chemical Biology
Ravi Kiran Reddy Kalathur, Nicolas Gagniere, Guillaume Berthommier, Laetitia Poidevin, Wolfgang Raffelsberger, Raymond Ripp, Thierry Léveillard, Olivier Poch
BACKGROUND: The retina is a multi-layered sensory tissue that lines the back of the eye and acts at the interface of input light and visual perception. Its main function is to capture photons and convert them into electrical impulses that travel along the optic nerve to the brain where they are turned into images. It consists of neurons, nourishing blood vessels and different cell types, of which neural cells predominate. Defects in any of these cells can lead to a variety of retinal diseases, including age-related macular degeneration, retinitis pigmentosa, Leber congenital amaurosis and glaucoma...
2008: BMC Genomics
Fetch more papers »
Fetching more papers... Fetching...
Read by QxMD. Sign in or create an account to discover new knowledge that matter to you.
Remove bar
Read by QxMD icon Read

Search Tips

Use Boolean operators: AND/OR

diabetic AND foot
diabetes OR diabetic

Exclude a word using the 'minus' sign

Virchow -triad

Use Parentheses

water AND (cup OR glass)

Add an asterisk (*) at end of a word to include word stems

Neuro* will search for Neurology, Neuroscientist, Neurological, and so on

Use quotes to search for an exact phrase

"primary prevention of cancer"
(heart or cardiac or cardio*) AND arrest -"American Heart Association"