keyword
MENU ▼
Read by QxMD icon Read
search

3D printed biomaterial scaffold

keyword
https://www.readbyqxmd.com/read/28776691/three-dimensionally-printed-polyetherketoneketone-scaffolds-with-mesenchymal-stem-cells-for-the-reconstruction-of-critical-sized-mandibular-defects
#1
Michael G Roskies, Dongdong Fang, Mohamed-Nur Abdallah, Andre M Charbonneau, Navi Cohen, Jack O Jordan, Michael P Hier, Alex Mlynarek, Faleh Tamimi, Simon D Tran
OBJECTIVE: Additive manufacturing offers a tailored approach to tissue engineering by providing anatomically precise scaffolds onto which stem cells and growth factors can be supplied. Polyetherketoneketone (PEKK), an ideal candidate biomaterial, is limited by a poor implant-bone interface but can be functionalized with adipose-derived stem cells (ADSC) to promote integration. This in vivo study examined the interaction of a three-dimensional printed PEKK/ADSC implant within the critical-sized mandibular defect in a rabbit model...
August 4, 2017: Laryngoscope
https://www.readbyqxmd.com/read/28772411/additively-manufactured-scaffolds-for-bone-tissue-engineering-and-the-prediction-of-their-mechanical-behavior-a-review
#2
REVIEW
Xiang-Yu Zhang, Gang Fang, Jie Zhou
Additive manufacturing (AM), nowadays commonly known as 3D printing, is a revolutionary materials processing technology, particularly suitable for the production of low-volume parts with high shape complexities and often with multiple functions. As such, it holds great promise for the fabrication of patient-specific implants. In recent years, remarkable progress has been made in implementing AM in the bio-fabrication field. This paper presents an overview on the state-of-the-art AM technology for bone tissue engineering (BTE) scaffolds, with a particular focus on the AM scaffolds made of metallic biomaterials...
January 10, 2017: Materials
https://www.readbyqxmd.com/read/28759433/engineering-derived-approaches-for-ipsc-preparation-expansion-differentiation-and-applications
#3
Yang Li, Ling Li, Zhi-Nan Chen, Ge Gao, Rui Yao, Wei Sun
Remarkable achievements have been made since induced pluripotent stem cells (iPSCs) were first introduced in 2006. Compared with non-pluripotent stem cells, iPSC research faces several additional complexities, such as the choice of extracellular matrix proteins, growth and differentiation factors, as well as technical challenges related to self-renewal and directed differentiation. Overcoming these challenges requires the integration of knowledge and technologies from multiple fields including cell biology, biomaterial science, engineering, physics and medicine...
July 31, 2017: Biofabrication
https://www.readbyqxmd.com/read/28754244/3d-printed-biomaterials-with-regional-auxetic-properties
#4
John J Warner, Allison R Gillies, Henry H Hwang, Hong Zhang, Richard L Lieber, Shaochen Chen
Tissue engineering is replete with methods for inducing and mediating cell differentiation, which are crucial for ensuring proper regrowth of desired tissues. In this study, we developed a 3D-printed, non-positive Poisson's Ratio (NPPR) scaffold intended for future use in stretch-mediated cell differentiation applications, such as in muscle and tendon regeneration. We utilized dynamic optical projection stereolithography (DOPsL) to fabricate multi-layered, cell-laden NPPR scaffolds - these scaffolds can not only support aggregate cell growth, but can also be printed with locally-tunable force-displacement properties at length scales appropriate for tissue interaction...
May 19, 2017: Journal of the Mechanical Behavior of Biomedical Materials
https://www.readbyqxmd.com/read/28718059/recent-advances-in-tissue-engineering-strategies-for-the-treatment-of-joint-damage
#5
REVIEW
Makeda K Stephenson, Ashley L Farris, Warren L Grayson
PURPOSE OF REVIEW: While the clinical potential of tissue engineering for treating joint damage has yet to be realized, research and commercialization efforts in the field are geared towards overcoming major obstacles to clinical translation, as well as towards achieving engineered grafts that recapitulate the unique structures, function, and physiology of the joint. In this review, we describe recent advances in technologies aimed at obtaining biomaterials, stem cells, and bioreactors that will enable the development of effective tissue-engineered treatments for repairing joint damage...
August 2017: Current Rheumatology Reports
https://www.readbyqxmd.com/read/28675678/3d-bioprinting-and-the-current-applications-in-tissue-engineering
#6
REVIEW
Ying Huang, Xiao-Fei Zhang, Guifang Gao, Tomo Yonezawa, Xiaofeng Cui
Bioprinting as an enabling technology for tissue engineering possesses the promises to fabricate highly mimicked tissue or organs with digital control. As one of the biofabrication approaches, bioprinting has the advantages of high throughput and precise control of both scaffold and cells. Therefore, this technology is not only ideal for translational medicine but also for basic research applications. Bioprinting has already been widely applied to construct functional tissues such as vasculature, muscle, cartilage, and bone...
July 4, 2017: Biotechnology Journal
https://www.readbyqxmd.com/read/28639959/3d-printing-current-use-in-facial-plastic-and-reconstructive-surgery
#7
Tsung-Yen Hsieh, Raj Dedhia, Brian Cervenka, Travis T Tollefson
PURPOSE OF REVIEW: To review the use of three-dimensional (3D) printing in facial plastic and reconstructive surgery, with a focus on current uses in surgical training, surgical planning, clinical outcomes, and biomedical research. To evaluate the limitations and future implications of 3D printing in facial plastic and reconstructive surgery. RECENT FINDINGS: Studies reviewed demonstrated 3D printing applications in surgical planning including accurate anatomic biomodels, surgical cutting guides in reconstruction, and patient-specific implants fabrication...
August 2017: Current Opinion in Otolaryngology & Head and Neck Surgery
https://www.readbyqxmd.com/read/28634956/microfluidic-bioprinting-of-heterogeneous-3d-tissue-constructs
#8
Cristina Colosi, Marco Costantini, Andrea Barbetta, Mariella Dentini
3D bioprinting is an emerging field that can be described as a robotic additive biofabrication technology that has the potential to build tissues or organs. In general, bioprinting uses a computer-controlled printing device to accurately deposit cells and biomaterials into precise architectures with the goal of creating on demand organized multicellular tissue structures and eventually intra-organ vascular networks. The latter, in turn, will promote the host integration of the engineered tissue/organ in situ once implanted...
2017: Methods in Molecular Biology
https://www.readbyqxmd.com/read/28631614/3d-printed-bioceramic-scaffolds-with-antibacterial-and-osteogenic-activity
#9
Yongliang Zhang, Dong Zhai, Mengchi Xu, Qingqiang Yao, Huiying Zhu, Jiang Chang, Chengtie Wu
Bacterial infection poses a significant risk with the wide application of bone graft materials. Designing bone grafts with good antibacterial performance and excellent bone-forming activity is of particular significance for bone tissue engineering. In our study, a 3D printing method was used to prepare β-tricalcium phosphate (β-TCP) bioceramic scaffolds. Silver (Ag) nanoparticles were uniformly dispersed on graphene oxide (GO) to form a homogeneous nanocomposite (named Ag@GO) with different Ag-to-graphene oxide mass ratios, with this being synthesized via the liquid chemical reduction approach...
June 20, 2017: Biofabrication
https://www.readbyqxmd.com/read/28585319/structurally-and-functionally-optimized-silk-fibroin-gelatin-scaffold-using-3d-printing-to-repair-cartilage-injury-in-vitro-and-in-vivo
#10
Weili Shi, Muyang Sun, Xiaoqing Hu, Bo Ren, Jin Cheng, Chenxi Li, Xiaoning Duan, Xin Fu, Jiying Zhang, Haifeng Chen, Yingfang Ao
Articular cartilage repair remains a great challenge for clinicians and researchers. Recently, there emerges a promising way to achieve one-step cartilage repair in situ by combining endogenic bone marrow stem cells (BMSCs) with suitable biomaterials using a tissue engineering technique. To meet the increasing demand for cartilage tissue engineering, a structurally and functionally optimized scaffold is designed, by integrating silk fibroin with gelatin in combination with BMSC-specific-affinity peptide using 3D printing (3DP) technology...
June 6, 2017: Advanced Materials
https://www.readbyqxmd.com/read/28576050/extraction-and-characterization-of-collagen-from-antarctic-and-sub-antarctic-squid-and-its-potential-application-in-hybrid-scaffolds-for-tissue-engineering
#11
Rui C G Coelho, Ana L P Marques, Sara M Oliveira, Gabriela S Diogo, Rogério P Pirraco, Joana Moreira-Silva, José C Xavier, Rui L Reis, Tiago H Silva, João F Mano
Collagen is the most abundant protein found in mammals and it exhibits a low immunogenicity, high biocompatibility and biodegradability when compared with others natural polymers. For this reason, it has been explored for the development of biologically instructive biomaterials with applications for tissue substitution and regeneration. Marine origin collagen has been pursued as an alternative to the more common bovine and porcine origins. This study focused on squid (Teuthoidea: Cephalopoda), particularly the Antarctic squid Kondakovia longimana and the Sub-Antarctic squid Illex argentinus as potential collagen sources...
September 1, 2017: Materials Science & Engineering. C, Materials for Biological Applications
https://www.readbyqxmd.com/read/28558161/-printability-of-candidate-biomaterials-for-extrusion-based-3d-printing-state-of-the-art
#12
REVIEW
Stuart Kyle, Zita M Jessop, Ayesha Al-Sabah, Iain S Whitaker
Regenerative medicine has been highlighted as one of the UK's 8 'Great Technologies' with the potential to revolutionize patient care in the 21st Century. Over the last decade, the concept of '3D bioprinting' has emerged, which allows the precise deposition of cell laden bioinks with the aim of engineering complex, functional tissues. For 3D printing to be used clinically, there is the need to produce advanced functional biomaterials, a new generation of bioinks with suitable cell culture and high shape/print fidelity, to match or exceed the physical, chemical and biological properties of human tissue...
May 30, 2017: Advanced Healthcare Materials
https://www.readbyqxmd.com/read/28544779/a-brief-review-of-extrusion-based-tissue-scaffold-bio-printing
#13
REVIEW
Liqun Ning, Xiongbiao Chen
Extrusion-based bio-printing has great potential as a technique for manipulating biomaterials and living cells to create three-dimensional (3D) scaffolds for damaged tissue repair and function restoration. Over the last two decades, advances in both engineering techniques and life sciences have evolved extrusion-based bio-printing from a simple technique to one able to create diverse tissue scaffolds from a wide range of biomaterials and cell types. However, the complexities associated with synthesis of materials for bio-printing and manipulation of multiple materials and cells in bio-printing pose many challenges for scaffold fabrication...
May 24, 2017: Biotechnology Journal
https://www.readbyqxmd.com/read/28539292/-gelatin-alginate-hydrogel-scaffolds-prepared-by-3d-bioprinting-promotes-cell-adhesion-and-proliferation-of-human-dental-pulp-cells-in-vitro
#14
Hai-Yue Yu, Dan-Dan Ma, Bu-Ling Wu
OBJECTIVE: To evaluate the cytotoxicity of gelatin/alginate hydrogel scaffolds prepared by 3D bioprinting in human dental pulp cells (HDPCs) and compare the cell adhesion and proliferation of the cells seeded in the biomaterial using two different methods. METHODS: HDPCs isolated by tissue block culture and enzyme digestion were cultured and passaged. Gelatin/alginate hydrogel scaffolds were printed using a bioplotter, and the cytotoxicity of the aqueous extracts of the scaffold material was tested in the third passage of HDPCs using cell counting kit-8...
May 20, 2017: Nan Fang Yi Ke da Xue Xue Bao, Journal of Southern Medical University
https://www.readbyqxmd.com/read/28530207/fabrication-of-biomimetic-bone-grafts-with-multi-material-3d-printing
#15
Nicholas Sears, Prachi Dhavalikar, Michael Whitely, Elizabeth Cosgriff-Hernandez
Extrusion deposition is a versatile method for the 3D printing of biomaterials such as hydrogels, ceramics, and suspensions. Recently, a new class of emulsion inks were developed that can be used to create tunable, hierarchically porous materials with a cure-on-dispense method. Propylene fumarate dimethacrylate (PFDMA) was selected to fabricate bone grafts using this technology due to its established biocompatibility, osteoconductivity, and good compressive properties. Scaffolds fabricated from PFDMA emulsion inks displayed compressive modulus and yield strength of approximately 15 and 1 MPa, respectively...
May 22, 2017: Biofabrication
https://www.readbyqxmd.com/read/28389072/the-characteristics-of-mineral-trioxide-aggregate-polycaprolactone-3-dimensional-scaffold-with-osteogenesis-properties-for-tissue-regeneration
#16
Yung-Cheng Chiu, Hsin-Yuan Fang, Tuan-Ti Hsu, Cheng-Yao Lin, Ming-You Shie
INTRODUCTION: The aim of this study was to investigate whether the mineral trioxide aggregate/polycaprolactone (MTA/PCL) hybrid 3-dimensional (3D) scaffold supplies a suitable microenvironment for the osteogenic differentiation of human dental pulp cells (hDPCs) and to further consider the effect of the MTA/PCL composite on the biological performance of hybrid scaffolds. METHODS: MTA was suspended in absolute alcohol and dropped slowly into PCL that was generated with the printable MTA-matrix...
April 4, 2017: Journal of Endodontics
https://www.readbyqxmd.com/read/28388393/biomimetic-nanofibrous-scaffolds-for-neural-tissue-engineering-and-drug-development
#17
REVIEW
Jing Wu, Lili Xie, William Zhi Yuan Lin, Qiushui Chen
Neural tissue engineering aims to develop functional substitutes for damaged tissues, creating many promising opportunities in regeneration medicine and drug discovery. Biomaterial scaffolds routinely provide nerve cells with a physical support for cell growth and regeneration, yielding 3D extracellular matrix to mimic the in vivo cellular microenvironment. Among the various types of cellular scaffolds for reconstruction, biomimetic nanofibrous scaffolds are recognized as appropriate candidates by precisely controlling morphology and shape...
April 4, 2017: Drug Discovery Today
https://www.readbyqxmd.com/read/28351682/two-photon-polymerization-for-production-of-human-ipsc-derived-retinal-cell-grafts
#18
Kristan S Worthington, Luke A Wiley, Emily E Kaalberg, Malia M Collins, Robert F Mullins, Edwin M Stone, Budd A Tucker
Recent advances in induced pluripotent stem cell (iPSC) technology have paved the way for the production of patient-specific neurons that are ideal for autologous cell replacement for treatment of neurodegenerative diseases. In the case of retinal degeneration and associated photoreceptor cell therapy, polymer scaffolds are critical for cellular survival and integration; however, prior attempts to materialize this concept have been unsuccessful in part due to the materials' inability to guide cell alignment...
June 2017: Acta Biomaterialia
https://www.readbyqxmd.com/read/28337223/emerging-perspectives-in-scaffold-for-tissue-engineering-in-oral-surgery
#19
REVIEW
Gabriele Ceccarelli, Rossella Presta, Laura Benedetti, Maria Gabriella Cusella De Angelis, Saturnino Marco Lupi, Ruggero Rodriguez Y Baena
Bone regeneration is currently one of the most important and challenging tissue engineering approaches in regenerative medicine. Bone regeneration is a promising approach in dentistry and is considered an ideal clinical strategy in treating diseases, injuries, and defects of the maxillofacial region. Advances in tissue engineering have resulted in the development of innovative scaffold designs, complemented by the progress made in cell-based therapies. In vitro bone regeneration can be achieved by the combination of stem cells, scaffolds, and bioactive factors...
2017: Stem Cells International
https://www.readbyqxmd.com/read/28328084/control-of-nanoparticle-release-kinetics-from-3d-printed-hydrogel-scaffolds
#20
Bernhard Baumann, Tomasz Jungst, Simone Stichler, Susanne Feineis, Oliver Wiltschka, Matthias Kuhlmann, Mika Lindén, Jürgen Groll
The convergence of biofabrication with nanotechnology is largely unexplored but enables geometrical control of cell-biomaterial arrangement combined with controlled drug delivery and release. As a step towards integration of these two fields of research, this study demonstrates that modulation of electrostatic nanoparticle-polymer and nanoparticle-nanoparticle interactions can be used for tuning nanoparticle release kinetics from 3D printed hydrogel scaffolds. This generic strategy can be used for spatiotemporal control of the release kinetics of nanoparticulate drug vectors in biofabricated constructs...
April 10, 2017: Angewandte Chemie
keyword
keyword
103053
1
2
Fetch more papers »
Fetching more papers... Fetching...
Read by QxMD. Sign in or create an account to discover new knowledge that matter to you.
Remove bar
Read by QxMD icon Read
×

Search Tips

Use Boolean operators: AND/OR

diabetic AND foot
diabetes OR diabetic

Exclude a word using the 'minus' sign

Virchow -triad

Use Parentheses

water AND (cup OR glass)

Add an asterisk (*) at end of a word to include word stems

Neuro* will search for Neurology, Neuroscientist, Neurological, and so on

Use quotes to search for an exact phrase

"primary prevention of cancer"
(heart or cardiac or cardio*) AND arrest -"American Heart Association"