keyword
MENU ▼
Read by QxMD icon Read
search

3D printed biomaterial scaffold

keyword
https://www.readbyqxmd.com/read/28194931/influence-of-scaffold-design-on-3d-printed-cell-constructs
#1
Auryn Souness, Fernanda Zamboni, Gavin M Walker, Maurice N Collins
Additive manufacturing is currently receiving significant attention in the field of tissue engineering and biomaterial science. The development of precise, affordable 3D printing technologies has provided a new platform for novel research to be undertaken in 3D scaffold design and fabrication. In the past, a number of 3D scaffold designs have been fabricated to investigate the potential of a 3D printed scaffold as a construct which could support cellular life. These studies have shown promising results; however, few studies have utilized a low-cost desktop 3D printing technology as a potential rapid manufacturing route for different scaffold designs...
February 14, 2017: Journal of Biomedical Materials Research. Part B, Applied Biomaterials
https://www.readbyqxmd.com/read/28187519/development-of-a-novel-alginate-polyvinyl-alcohol-hydroxyapatite-hydrogel-for-3d-bioprinting-bone-tissue-engineered-scaffolds
#2
Stephanie T Bendtsen, Sean P Quinnell, Mei Wei
3D printed biomaterials used as personalized tissue substitutes have the ability to promote and enhance regeneration in areas of defected tissue. The challenge with 3D printing for bone tissue engineering remains the selection of a material with optimal rheological properties for printing in addition to biocompatibility and capacity for uniform cell incorporation. Hydrogel biomaterials may provide sufficient printability to allow cell encapsulation and bioprinting of scaffolds with uniform cell distribution...
February 10, 2017: Journal of Biomedical Materials Research. Part A
https://www.readbyqxmd.com/read/28165584/triblock-copolymers-based-on-%C3%AE%C2%B5-caprolactone-and-trimethylene-carbonate-for-the-3d-printing-of-tissue-engineering-scaffolds
#3
Aysun Güney, Jos Malda, Wouter J A Dhert, Dirk W Grijpma
BACKGROUND: Biodegradable PCL-b-PTMC-b-PCL triblock copolymers based on trimethylene carbonate (TMC) and ε-caprolactone (CL) were prepared and used in the 3D printing of tissue engineering scaffolds. Triblock copolymers of various molecular weights containing equal amounts of TMC and CL were prepared. These block copolymers combine the low glass transition temperature of amorphous PTMC (approximately -20°C) and the semi-crystallinity of PCL (glass transition approximately -60°C and melting temperature approximately 60°C)...
February 1, 2017: International Journal of Artificial Organs
https://www.readbyqxmd.com/read/28026926/3d-printing-biocompatible-polyurethane-poly-lactic-acid-graphene-oxide-nanocomposites-anisotropic-properties
#4
Qiyi Chen, Joey Dacula Mangadlao, Jaqueline Wallat, Al De Leon, Jonathan K Pokorski, Rigoberto C Advincula
Blending thermoplastic polyurethane (TPU) with poly(lactic acid) (PLA) is a proven method to achieve a much more mechanically robust material, whereas the addition of graphene oxide (GO) is increasingly applied in polymer nanocomposites to tailor further their properties. On the other hand, additive manufacturing has high flexibility of structure design which can significantly expand the application of materials in many fields. This study demonstrates the fused deposition modeling (FDM) 3D printing of TPU/PLA/GO nanocomposites and its potential application as biocompatible materials...
February 1, 2017: ACS Applied Materials & Interfaces
https://www.readbyqxmd.com/read/28025653/designing-biomaterials-for-3d-printing
#5
Murat Guvendiren, Joseph Molde, Rosane M D Soares, Joachim Kohn
Three-dimensional (3D) printing is becoming an increasingly common technique to fabricate scaffolds and devices for tissue engineering applications. This is due to the potential of 3D printing to provide patient-specific designs, high structural complexity, rapid on-demand fabrication at a low-cost. One of the major bottlenecks that limits the widespread acceptance of 3D printing in biomanufacturing is the lack of diversity in "biomaterial inks". Printability of a biomaterial is determined by the printing technique...
October 10, 2016: ACS Biomaterials Science & Engineering
https://www.readbyqxmd.com/read/27942578/three-dimensional-printing-of-bone-extracellular-matrix-for-craniofacial-regeneration
#6
Ben P Hung, Bilal A Naved, Ethan L Nyberg, Miguel Dias, Christina A Holmes, Jennifer H Elisseeff, Amir H Dorafshar, Warren L Grayson
Tissue-engineered approaches to regenerate bone in the craniomaxillofacial region utilize biomaterial scaffolds to provide structural and biological cues to stem cells to stimulate osteogenic differentiation. Bioactive scaffolds are typically comprised of natural components but often lack the manufacturability of synthetic materials. To circumvent this trade-off, we 3D printed materials comprised of decellularized bone (DCB) matrix particles combined with polycaprolactone (PCL) to create novel hybrid DCB:PCL scaffolds for bone regeneration...
October 10, 2016: ACS Biomaterials Science & Engineering
https://www.readbyqxmd.com/read/27940192/3d-bioprinting-of-urethra-with-pcl-plcl-blend-and-dual-autologous-cells-in-fibrin-hydrogel-an-in-vitro-evaluation-of-biomimetic-mechanical-property-and-cell-growth-environment
#7
Kaile Zhang, Qiang Fu, James Yoo, Xiangxian Chen, Prafulla Chandra, Xiumei Mo, Lujie Song, Anthony Atala, Weixin Zhao
OBJECTIVE: Urethral stricture is a common condition seen after urethral injury. The currently available treatments are inadequate and there is a scarcity of substitute materials used for treatment of urethral stricture. The traditional tissue engineering of urethra involves scaffold design, fabrication and processing of multiple cell types. METHODS: In this study, we have used 3D bioprinting technology to fabricate cell-laden urethra in vitro with different polymer types and structural characteristics...
December 8, 2016: Acta Biomaterialia
https://www.readbyqxmd.com/read/27917703/principles-of-the-kenzan-method-for-robotic-cell-spheroid-based-3d-bioprinting
#8
Nicanor I Moldovan, Narutoshi Hibino, Koichi Nakayama
Bioprinting is a technology with the prospect to change the way many diseases are treated, by replacing the damaged tissues with live, de novo created bio-similar constructs. However, after more than a decade of incubation and many proofs-of-concept, the field is still in its infancy. The current stagnation is the consequence of its early success: the first bioprinters, and most of those which followed, were modified versions of the 3D printers used in additive manufacturing, redesigned for layer-by-layer dispersion of biomaterials...
December 4, 2016: Tissue Engineering. Part B, Reviews
https://www.readbyqxmd.com/read/27892655/3d-printed-polycaprolactone-carbon-nanotube-composite-scaffolds-for-cardiac-tissue-engineering
#9
Chee Meng Benjamin Ho, Abhinay Mishra, Pearlyn Teo Pei Lin, Sum Huan Ng, Wai Yee Yeong, Young-Jin Kim, Yong-Jin Yoon
Fabrication of tissue engineering scaffolds with the use of novel 3D printing has gained lot of attention, however systematic investigation of biomaterials for 3D printing have not been widely explored. In this report, well-defined structures of polycaprolactone (PCL) and PCL- carbon nanotube (PCL-CNT) composite scaffolds have been designed and fabricated using a 3D printer. Conditions for 3D printing has been optimized while the effects of varying CNT percentages with PCL matrix on the thermal, mechanical and biological properties of the printed scaffolds are studied...
November 28, 2016: Macromolecular Bioscience
https://www.readbyqxmd.com/read/27877865/three-dimensional-printed-macroporous-polylactic-acid-hydroxyapatite-composite-scaffolds-for-promoting-bone-formation-in-a-critical-size-rat-calvarial-defect-model
#10
Haifeng Zhang, Xiyuan Mao, Zijing Du, Wenbo Jiang, Xiuguo Han, Danyang Zhao, Dong Han, Qingfeng Li
We have explored the applicability of printed scaffold by comparing osteogenic ability and biodegradation property of three resorbable biomaterials. A polylactic acid/hydroxyapatite (PLA/HA) composite with a pore size of 500 μm and 60% porosity was fabricated by three-dimensional printing. Three-dimensional printed PLA/HA, β-tricalcium phosphate (β-TCP) and partially demineralized bone matrix (DBM) seeded with bone marrow stromal cells (BMSCs) were evaluated by cell adhesion, proliferation, alkaline phosphatase activity and osteogenic gene expression of osteopontin (OPN) and collagen type I (COL-1)...
2016: Science and Technology of Advanced Materials
https://www.readbyqxmd.com/read/27782383/uv-cross-linkable-graphene-poly-trimethylene-carbonate-composites-for-3d-printing-of-electrically-conductive-scaffolds
#11
Sepidar Sayyar, Miina Bjorninen, Suvi Haimi, Susanna Miettinen, Kerry Gilmore, Dirk Grijpma, Gordon Wallace
Conductive, flexible graphene/poly(trimethylene carbonate) (PTMC) composites were prepared. Addition of just 3 wt % graphene to PTMC oligomers functionalized with methacrylate end-groups followed by UV cross-linking resulted in more than 100% improvement in tensile strength and enhanced electrical conductivity by orders of magnitude without altering the processability of the host material. The addition of graphene also enhanced mesenchymal stem cell (MSC) attachment and proliferation. When electrical stimulation via the composite material was applied, MSC viability was not compromised, and osteogenic markers were upregulated...
November 23, 2016: ACS Applied Materials & Interfaces
https://www.readbyqxmd.com/read/27732106/controlled-local-drug-delivery-strategies-from-chitosan-hydrogels-for-wound-healing
#12
Lisa Elviri, Annalisa Bianchera, Carlo Bergonzi, Ruggero Bettini
The main target of tissue engineering is the preparation and application of adequate materials for the design and production of scaffolds, that possess properties promoting cell adhesion, proliferation and differentiation. The use of natural polysaccharides, such as chitosan, to prepare hydrogels for wound healing and controlled drug delivery is a research topic of wide and increasing interest. Areas covered: This review presents the latest results and challenges in the preparation of chitosan and chitosan-based scaffold/hydrogel for wound healing applications...
October 12, 2016: Expert Opinion on Drug Delivery
https://www.readbyqxmd.com/read/27728813/3d-printing-of-biomaterials-with-mussel-inspired-nanostructures-for-tumor-therapy-and-tissue-regeneration
#13
Hongshi Ma, Jian Luo, Zhe Sun, Lunguo Xia, Mengchao Shi, Mingyao Liu, Jiang Chang, Chengtie Wu
Primary bone cancer brings patients great sufferings. To deal with the bone defects resulted from cancer surgery, biomaterials with good bone-forming ability are necessary to repair bone defects. Meanwhile, in order to prevent possible tumor recurrence, it is essential that the remaining tumor cells around bone defects are completely killed. However, there are few biomaterials with the ability of both cancer therapy and bone regeneration until now. Here, we fabricated a 3D-printed bioceramic scaffold with a uniformly self-assembled Ca-P/polydopamine nanolayer surface...
December 2016: Biomaterials
https://www.readbyqxmd.com/read/27667017/cold-atmospheric-plasma-cap-surface-nanomodified-3d-printed-polylactic-acid-pla-scaffolds-for-bone-regeneration
#14
Mian Wang, Pelagie Favi, Xiaoqian Cheng, Negar H Golshan, Katherine S Ziemer, Michael Keidar, Thomas J Webster
: Three-dimensional (3D) printing is a new fabrication method for tissue engineering which can precisely control scaffold architecture at the micron-scale. However, scaffolds not only need 3D biocompatible structures that mimic the micron structure of natural tissues, they also require mimicking of the nano-scale extracellular matrix properties of the tissue they intend to replace. In order to achieve this, the objective of the present in vitro study was to use cold atmospheric plasma (CAP) as a quick and inexpensive way to modify the nano-scale roughness and chemical composition of a 3D printed scaffold surface...
September 22, 2016: Acta Biomaterialia
https://www.readbyqxmd.com/read/27634915/effect-of-bioink-properties-on-printability-and-cell-viability-for-3d-bioplotting-of-embryonic-stem-cells
#15
Liliang Ouyang, Rui Yao, Yu Zhao, Wei Sun
3D cell printing is an emerging technology for fabricating complex cell-laden constructs with precise and pre-designed geometry, structure and composition to overcome the limitations of 2D cell culture and conventional tissue engineering scaffold technology. This technology enables spatial manipulation of cells and biomaterials, also referred to as 'bioink', and thus allows study of cellular interactions in a 3D microenvironment and/or in the formation of functional tissues and organs. Recently, many efforts have been made to develop new bioinks and to apply more cell sources for better biocompatibility and biofunctionality...
2016: Biofabrication
https://www.readbyqxmd.com/read/27617188/strategies-and-first-advances-in-the-development-of-prevascularized-bone-implants
#16
REVIEW
Christoph Rücker, Holger Kirch, Oliver Pullig, Heike Walles
Despite the great regenerative potential of human bone, large bone defects are a serious condition. Commonly, large defects are caused by trauma, bone disease, malignant tumor removal, and infection or medication-related osteonecrosis. Large defects necessitate clinical treatment in the form of autologous bone transplantation or implantation of biomaterials as well as the application of other available methods that enhance bone defect repair. The development and application of prevascularized bone implants are closely related to the development animal models and require dedicated methods in order to reliably predict possible clinical outcomes and the efficacy of implants...
2016: Current Molecular Biology Reports
https://www.readbyqxmd.com/read/27558310/growth-factor-dose-tuning-for-bone-progenitor-cell-proliferation-and-differentiation-on-resorbable-poly-propylene-fumarate-scaffolds
#17
Ruchi Mishra, Ryan S Sefcik, Tyler J Bishop, Stefani M Montelone, Nisha Crouser, Jean F Welter, Arnold I Caplan, David Dean
One approach to the development of an artificial graft material could rely on uniform coverage of a resorbable biomaterial with bone extracellular matrix (ECM). To achieve this on the surface of poly(propylene fumarate) (PPF) scaffolds, we selected a growth factor regime of basic fibroblast growth factor (FGF-2) (5 ng/mL), platelet-derived growth factor (PDGF-BB) (40 ng/mL), and epidermal growth factor (EGF) (20 ng/mL) to stimulate proliferation of bone marrow-derived human mesenchymal stem cells (BM-hMSCs)...
September 2016: Tissue Engineering. Part C, Methods
https://www.readbyqxmd.com/read/27426411/polylactic-acid-pla-controlled-delivery-carriers-for-biomedical-applications
#18
REVIEW
Betty Tyler, David Gullotti, Antonella Mangraviti, Tadanobu Utsuki, Henry Brem
Polylactic acid (PLA) and its copolymers have a long history of safety in humans and an extensive range of applications. PLA is biocompatible, biodegradable by hydrolysis and enzymatic activity, has a large range of mechanical and physical properties that can be engineered appropriately to suit multiple applications, and has low immunogenicity. Formulations containing PLA have also been Food and Drug Administration (FDA)-approved for multiple applications making PLA suitable for expedited clinical translatability...
December 15, 2016: Advanced Drug Delivery Reviews
https://www.readbyqxmd.com/read/27366149/3d-printed-scaffolds-and-biomaterials-review-of-alveolar-bone-augmentation-and-periodontal-regeneration-applications
#19
REVIEW
Farah Asa'ad, Giorgio Pagni, Sophia P Pilipchuk, Aldo Bruno Giannì, William V Giannobile, Giulio Rasperini
To ensure a successful dental implant therapy, the presence of adequate vertical and horizontal alveolar bone is fundamental. However, an insufficient amount of alveolar ridge in both dimensions is often encountered in dental practice due to the consequences of oral diseases and tooth loss. Although postextraction socket preservation has been adopted to lessen the need for such invasive approaches, it utilizes bone grafting materials, which have limitations that could negatively affect the quality of bone formation...
2016: International Journal of Dentistry
https://www.readbyqxmd.com/read/27300485/antibacterial-behavior-of-additively-manufactured-porous-titanium-with-nanotubular-surfaces-releasing-silver-ions
#20
S Amin Yavari, L Loozen, F L Paganelli, S Bakhshandeh, K Lietaert, J A Groot, A C Fluit, C H E Boel, J Alblas, H C Vogely, H Weinans, A A Zadpoor
Additive manufacturing (3D printing) has enabled fabrication of geometrically complex and fully interconnected porous biomaterials with huge surface areas that could be used for biofunctionalization to achieve multifunctional biomaterials. Covering the huge surface area of such porous titanium with nanotubes has been already shown to result in improved bone regeneration performance and implant fixation. In this study, we loaded TiO2 nanotubes with silver antimicrobial agents to equip them with an additional biofunctionality, i...
July 13, 2016: ACS Applied Materials & Interfaces
keyword
keyword
103053
1
2
Fetch more papers »
Fetching more papers... Fetching...
Read by QxMD. Sign in or create an account to discover new knowledge that matter to you.
Remove bar
Read by QxMD icon Read
×

Search Tips

Use Boolean operators: AND/OR

diabetic AND foot
diabetes OR diabetic

Exclude a word using the 'minus' sign

Virchow -triad

Use Parentheses

water AND (cup OR glass)

Add an asterisk (*) at end of a word to include word stems

Neuro* will search for Neurology, Neuroscientist, Neurological, and so on

Use quotes to search for an exact phrase

"primary prevention of cancer"
(heart or cardiac or cardio*) AND arrest -"American Heart Association"