keyword
MENU ▼
Read by QxMD icon Read
search

3D printed scaffold

keyword
https://www.readbyqxmd.com/read/29148982/a-dentin-derived-hydrogel-bioink-for-3d-printing-of-cell-laden-scaffolds-for-regenerative-dentistry
#1
Avathamsa Athirasala, Anthony Tahayeri, Greeshma Thrivikraman, Cristiane Miranda Franca, Nelson Monteiro, Victor Tran, Jack Ferracane, Luiz Bertassoni
Recent studies in tissue engineering have adopted extracellular matrix (ECM) derived scaffolds as natural and cytocompatible microenvironments for tissue regeneration. The dentin matrix, specifically, has been shown to be associated with a host of soluble and insoluble signaling molecules that can promote odontogenesis. Here, we have developed a novel bioink, blending printable alginate (3% w/v) hydrogels with the soluble and insoluble fractions of the dentin matrix. We have optimized the printing parameters and the concentrations of the individual components of the bioink for print accuracy, cell viability and odontogenic potential...
November 17, 2017: Biofabrication
https://www.readbyqxmd.com/read/29141120/biotinylated-photopolymers-for-3d-printed-unibody-lab-on-a-chip-optical-platforms
#2
Caterina Credi, Gianmarco Griffini, Marinella Levi, Stefano Turri
The present work reports the first demonstration of straightforward fabrication of monolithic unibody lab-on-a-chip (ULOCs) integrating bioactive micrometric 3D scaffolds by means of multimaterial stereolithography (SL). To this end, a novel biotin-conjugated photopolymer is successfully synthesized and optimally formulated to achieve high-performance SL-printing resolution, as demonstrated by the SL-fabrication of biotinylated structures smaller than 100 µm. By optimizing a multimaterial single-run SL-based 3D-printing process, such biotinylated microstructures are incorporated within perfusion microchambers whose excellent optical transparency enables real-time optical microscopy analyses...
November 15, 2017: Small
https://www.readbyqxmd.com/read/29134773/design-and-biological-functionality-of-a-novel-hybrid-ti-6al-4v-hydrogel-system-for-reconstruction-of-bone-defects
#3
Alok Kumar, K C Nune, R D K Misra
We have designed a unique injectable bioactive hydrogel comprising of alginate, gelatin, and nanocrystalline hydroxyapatite and loaded with osteoblasts, with the ability to infiltrate into three-dimensional Ti-6Al-4V scaffolds with interconnected porous architecture, fabricated by electron beam melting (EBM). A two-step crosslinking process using the EDC/NHS and CaCl2 was adopted and found to be effective in the fabrication of cell-loaded hydrogel/Ti-6Al-4V scaffold system. This hybrid Ti-6Al-4V scaffold/hydrogel system was designed for the reconstruction of bone defects, which are difficult to heal in the absence of suitable support materials...
November 14, 2017: Journal of Tissue Engineering and Regenerative Medicine
https://www.readbyqxmd.com/read/29134412/engineered-bone-scaffolds-with-dielectrophoresis-based-patterning-using-3d-printing
#4
Zhijie Huan, Henry K Chu, Hongbo Liu, Jie Yang, Dong Sun
Patterning of cells into a specific pattern is an important procedure in tissue engineering to facilitate tissue culture and ingrowth. In this paper, a new type of 3D-printed scaffold utilizing dielectrophoresis (DEP) for active cell seeding and patterning was proposed. This scaffold adopted a concentric-ring design that is similar to native bone tissues. The scaffold was fabricated with a commercial three-dimensional (3D) printer. Polylactic Acid (PLA) was selected as the material for the printer and the fabricated scaffold was coated with gold to enhance the conductivity for DEP manipulation...
November 13, 2017: Biomedical Microdevices
https://www.readbyqxmd.com/read/29131497/development-of-endothelial-cell-networks-in-3d-tissues-by-combination-of-melt-electrospinning-writing-with-cell-accumulation-technology
#5
Sarah Bertlein, Daichi Hikimoto, Gernot Hochleitner, Julia Hümmer, Tomasz Jungst, Michiya Matsusaki, Mitsuru Akashi, Jürgen Groll
A remaining challenge in tissue engineering approaches is the in vitro vascularization of engineered constructs or tissues. Current approaches in engineered vascularized constructs are often limited in the control of initial vascular network geometry, which is crucial to ensure full functionality of these constructs with regard to cell survival, metabolic activity, and potential differentiation ability. Herein, the combination of 3D-printed poly-ε-caprolactone scaffolds via melt electrospinning writing with the cell-accumulation technique to enable the formation and control of capillary-like network structures is reported...
November 13, 2017: Small
https://www.readbyqxmd.com/read/29130836/composite-3d-printed-scaffold-with-structured-electrospun-nanofibers-promotes-chondrocyte-adhesion-and-infiltration
#6
M Rampichová, E Košt'áková Kuželová, E Filová, J Chvojka, J Šafka, M Pelcl, J Daňková, E Prosecká, M Buzgo, M Plencner, D Lukáš, E Amler
Additive manufacturing, also called 3D printing, is an effective method for preparing scaffolds with defined structure and porosity. The disadvantage of the technique is the excessive smoothness of the printed fibers, which does not support cell adhesion. In the present study, a 3D printed scaffold was combined with electrospun classic or structured nanofibers to promote cell adhesion. Structured nanofibers were used to improve the infiltration of cells into the scaffold. Electrospun layers were connected to 3D printed fibers by gluing, thus enabling the fabrication of scaffolds with unlimited thickness...
November 13, 2017: Cell Adhesion & Migration
https://www.readbyqxmd.com/read/29129026/micromechanical-study-of-the-load-transfer-in-a-polycaprolactone-collagen-hybrid-scaffold-when-subjected-to-unconfined-and-confined-compression
#7
A P G Castro, D Lacroix
Scaffolds are used in diverse tissue engineering applications as hosts for cell proliferation and extracellular matrix formation. One of the most used tissue engineering materials is collagen, which is well known to be a natural biomaterial, also frequently used as cell substrate, given its natural abundance and intrinsic biocompatibility. This study aims to evaluate how the macroscopic biomechanical stimuli applied on a construct made of polycaprolactone scaffold embedded in a collagen substrate translate into microscopic stimuli at the cell level...
November 11, 2017: Biomechanics and Modeling in Mechanobiology
https://www.readbyqxmd.com/read/29128598/histological-and-radiological-evaluation-of-subcutaneous-implants-in-mouse-of-a-3d-printable-material-fulcure-720-and-experimental-application-in-mandibular-reconstruction
#8
J Megías Barrera, L García-Consuegra, A Novoa, S Costilla, S Junquera, G Ascani
INTRODUCTION: The aim of this study was to evaluate the bioactivity of FullCure compared to porous polyethylene implants (Medpor) in rats prior to custom-made scaffold support manufacturing for mandible segmental defects (MSD) reconstruction in sheep. METHODS: 12 Fullcure and Medpor laminaes were implanted in the left and right dorsum respectively of 6 wistar rats. Toxicity was assessed by skin, kidney and liver histopathology 3 months post-implantation. Computed Tomography (CT) was carried out in order to assess radiological differences between implants...
November 8, 2017: Journal of Stomatology, Oral and Maxillofacial Surgery
https://www.readbyqxmd.com/read/29127293/three-dimensional-printed-polylactic-acid-hydroxyapatite-composite-scaffolds-for-prefabricating-vascularized-tissue-engineered-bone-an-in-vivo-bioreactor-model
#9
Haifeng Zhang, Xiyuan Mao, Danyang Zhao, Wenbo Jiang, Zijing Du, Qingfeng Li, Chaohua Jiang, Dong Han
The repair of large bone defects with complex geometries remains a major clinical challenge. Here, we explored the feasibility of fabricating polylactic acid-hydroxyapatite (PLA-HA) composite scaffolds. These scaffolds were constructed from vascularized tissue engineered bone using an in vivo bioreactor (IVB) strategy with three-dimensional printing technology. Specifically, a rabbit model was established to prefabricate vascularized tissue engineered bone in two groups. An experimental group (EG) was designed using a tibial periosteum capsule filled with 3D printed (3DP) PLA-HA composite scaffolds seeded with bone marrow stromal cells (BMSCs) and crossed with a vascular bundle...
November 10, 2017: Scientific Reports
https://www.readbyqxmd.com/read/29119674/assessment-of-hydrogels-for-bioprinting-of-endothelial-cells
#10
Leo Benning, Ludwig Gutzweiler, Kevin Tröndle, Julian Riba, Roland Zengerle, Peter Koltay, Stefan Zimmermann, G Björn Stark, Günter Finkenzeller
In tissue engineering applications, vascularization can be accomplished by co-implantation of tissue forming cells and endothelial cells (ECs), whereby the latter are able to form functional blood vessels. The use of three-dimensional (3D) bioprinting technologies has the potential to improve the classical tissue engineering approach because these will allow the generation of scaffolds with high spatial control of endothelial cell allocation. This study focuses on a side by side comparisons of popular commercially available bioprinting hydrogels (matrigel, fibrin, collagen, gelatin, agarose, Pluronic F-127, alginate and alginate/gelatin) in the context of their physicochemical parameters, their swelling/degradation characteristics, their biological effects on vasculogenesis-related EC parameters and their printability...
November 8, 2017: Journal of Biomedical Materials Research. Part A
https://www.readbyqxmd.com/read/29116737/osteoinduction-by-foamed-and-3d-printed-calcium-phosphate-scaffolds-effect-of-nanostructure-and-pore-architecture
#11
Albert Barba, Anna Diez-Escudero, Yassine Maazouz, Katrin Rappe, Montserrat Espanol, Edgar Benjamín Montufar, Mar Bonany, Joanna Maria Sadowska, Jordi Guillem-Marti, Caroline Öhman-Mägi, Cecilia Persson, Maria-Cristina Manzanares, Jordi Franch, Maria-Pau Ginebra
Some biomaterials are osteoinductive, i.e., they are able to trigger the osteogenic process by inducing the differentiation of mesenchymal stem cells to the osteogenic lineage. Although the underlying mechanism is still unclear, microporosity and specific surface area (SSA) have been identified as critical factors in the material-associated osteoinduction. However, only sintered ceramics, with a limited range of porosities and SSA, have been analysed so far. In this work we were able to extend this range to the nanoscale, through the foaming and 3D-printing of biomimetic calcium phosphates, obtaining scaffolds with controlled micro and nanoporosity together with a tailored macropore architecture...
November 8, 2017: ACS Applied Materials & Interfaces
https://www.readbyqxmd.com/read/29107127/cyclodextrins-as-versatile-building-blocks-for-regenerative-medicine
#12
REVIEW
Carmen Alvarez-Lorenzo, Carlos A García-González, Angel Concheiro
Cyclodextrins (CDs) are one of the most versatile substances produced by nature, and it is in the aqueous biological environment where the multifaceted potential of CDs can be completely unveiled. CDs form inclusion complexes with a variety of guest molecules, including polymers, producing very diverse biocompatible supramolecular structures. Additionally, CDs themselves can trigger cell differentiation to distinct lineages depending on the substituent groups and also promote salt nucleation. These features together with the affinity-driven regulated release of therapeutic molecules, growth factors and gene vectors explain the rising interest for CDs as building blocks in regenerative medicine...
October 26, 2017: Journal of Controlled Release: Official Journal of the Controlled Release Society
https://www.readbyqxmd.com/read/29106065/fast-setting-silk-fibroin-bioink-for-bioprinting-of-patient-specific-memory-shape-implants
#13
João B Costa, Joana Silva-Correia, Joaquim M Oliveira, Rui L Reis
The pursuit for the "perfect" biomimetic and personalized implant for musculoskeletal tissue regeneration remains a big challenge. 3D printing technology that makes use of a novel and promising biomaterials can be part of the solution. In this study, a fast setting enzymatic-crosslinked silk fibroin (SF) bioink for 3D bioprinting is developed. Their properties are fine-tuned and different structures with good resolution, reproducibility, and reliability can be fabricated. Many potential applications exist for the SF bioinks including 3D bioprinted scaffolds and patient-specific implants exhibiting unique characteristics such as good mechanical properties, memory-shape feature, suitable degradation, and tunable pore architecture and morphology...
November 6, 2017: Advanced Healthcare Materials
https://www.readbyqxmd.com/read/29105943/characterization-of-printed-pla-scaffolds-for-bone-tissue-engineering
#14
Agathe Grémare, Vera Guduric, Reine Bareille, Valérie Heroguez, Simon Latour, Nicolas L'heureux, Jean-Christophe Fricain, Sylvain Catros, Damien Le Nihouannen
Autografts remain the gold standard for orthopedic transplantations. However, to overcome its limitations, bone tissue engineering proposes new strategies. This includes the development of new biomaterials such as synthetic polymers, to serve as scaffold for tissue production. The objective of this present study was to produce poly(lactic) acid (PLA) scaffolds of different pore size using fused deposition modeling (FDM) technique and to evaluate their physicochemical and biological properties. Structural, chemical, mechanical, and biological characterizations were performed...
November 6, 2017: Journal of Biomedical Materials Research. Part A
https://www.readbyqxmd.com/read/29104215/evaluation-of-pbs-treatment-and-pei-coating-effects-on-surface-morphology-and-cellular-response-of-3d-printed-alginate-scaffolds
#15
María A Mendoza García, Mohammad Izadifar, Xiongbiao Chen
Three-dimensional (3D) printing is an emerging technology for the fabrication of scaffolds to repair/replace damaged tissue/organs in tissue engineering. This paper presents our study on 3D printed alginate scaffolds treated with phosphate buffered saline (PBS) and polyethyleneimine (PEI) coating and their impacts on the surface morphology and cellular response of the printed scaffolds. In our study, sterile alginate was prepared by means of the freeze-drying method and then, used to prepare the hydrogel for 3D printing into calcium chloride, forming 3D scaffolds...
November 1, 2017: Journal of Functional Biomaterials
https://www.readbyqxmd.com/read/29096397/porous-composite-scaffold-incorporating-osteogenic-phytomolecule-icariin-for-promoting-skeletal-regeneration-in-challenging-osteonecrotic-bone-in-rabbits
#16
Yuxiao Lai, Huijuan Cao, Xinluan Wang, Shukui Chen, Ming Zhang, Nan Wang, Zhihong Yao, Yi Dai, Xinhui Xie, Peng Zhang, Xinsheng Yao, Ling Qin
Steroid-associated osteonecrosis (SAON) often requires surgical core decompression (CD) in the early stage for removal of necrotic bone to facilitate repair where bone grafts are needed for filling bone defect and avoiding subsequent joint collapse. In this study, we developed a bioactive composite scaffold incorporated with icariin, a unique phytomolecule that can provide structural and mechanical support and facilitate bone regeneration to fill into bone defects after surgical CD in established SAON rabbit model...
October 23, 2017: Biomaterials
https://www.readbyqxmd.com/read/29092483/a-switchable-positive-and-negative-air-pressure-device-for-efficient-and-gentle-handling-of-nanofiber-scaffolds
#17
Nathan A Hotaling, Vladimir Khristov, Arvydas Maminishkis, Kapil Bharti, Carl G Simon
A scaffold handling device (SHD) has been designed that can switch from gentle suction to positive pressure to lift and place nanofiber scaffolds. In tissue engineering laboratories, delicate fibrous scaffolds, such as electrospun nanofiber scaffolds, are often used as substrates for cell culture. Typical scaffold handling procedures include lifting the scaffolds, moving them from one container to another, sterilization, and loading scaffolds into cell culture plates. Using tweezers to handle the scaffolds can be slow, can damage the scaffolds, and can cause them to wrinkle or fold...
October 2017: Review of Scientific Instruments
https://www.readbyqxmd.com/read/29076301/feasibility-of-polycaprolactone-scaffolds-fabricated-by-three-dimensional-printing-for-tissue-engineering-of-tunica-albuginea
#18
Ho Song Yu, Jinju Park, Hyun Suk Lee, Su A Park, Dong Weon Lee, Kwangsung Park
PURPOSE: To investigate the feasibility of a polycaprolactone (PCL) scaffold fabricated by three-dimensional (3D) printing for tissue engineering applications for tunica albuginea. MATERIALS AND METHODS: PCL scaffolds were fabricated by use of a 3D printing system. Two scaffolds were fabricated that differed in the architecture of the lay-down pattern: a 90°PCL scaffold and a 45°PCL scaffold. Mechanical properties were measured to compare tensile strength between the two scaffold types...
October 25, 2017: World Journal of Men's Health
https://www.readbyqxmd.com/read/29064570/effects-of-scaffold-microstructure-and-low-intensity-pulsed-ultrasound-on-chondrogenic-differentiation-of-human-mesenchymal-stem-cells
#19
Mitra Aliabouzar, Se-Jun Lee, Xuan Zhou, Grace Lijjie Zhang, Kausik Sarkar
The effects of low intensity pulsed ultrasound (LIPUS) on proliferation and chondrogenic differentiation of human mesenchymal stem cells (hMSCs) seeded on 3D printed poly-(ethylene glycol)-diacrylate (PEG-DA) scaffolds with varying pore geometries (square and hexagonal channels) were investigated. The scaffold with square pores resulted in higher hMSC growth and chondrogenic differentiation than a solid or a hexagonally porous scaffold. The optimal LIPUS parameters at 1.5 MHz were found to be 100 mW/cm(2) and 20% duty cycle...
October 24, 2017: Biotechnology and Bioengineering
https://www.readbyqxmd.com/read/29064532/a-review-of-the-application-of-reinforced-hydrogels-and-silk-as-biomaterials-for-intervertebral-disc-repair
#20
D A Frauchiger, A Tekari, M Wöltje, G Fortunato, L M Benneker, B Gantenbein
The degeneration of the intervertebral disc (IVD) within the spinal column represents a major pain source for many patients. Biological restoration or repair of the IVD using "compressive-force-resistant" and at the same time "cytocompatible" materials would be desirable over current purely mechanical solutions, such as spinal fusion or IVD implants. This review provides an overview of recent research on the repair of the inner (nucleus pulposus = NP) and the outer (annulus fibrous = AF) parts of the IVD tissue...
October 24, 2017: European Cells & Materials
keyword
keyword
103052
1
2
Fetch more papers »
Fetching more papers... Fetching...
Read by QxMD. Sign in or create an account to discover new knowledge that matter to you.
Remove bar
Read by QxMD icon Read
×

Search Tips

Use Boolean operators: AND/OR

diabetic AND foot
diabetes OR diabetic

Exclude a word using the 'minus' sign

Virchow -triad

Use Parentheses

water AND (cup OR glass)

Add an asterisk (*) at end of a word to include word stems

Neuro* will search for Neurology, Neuroscientist, Neurological, and so on

Use quotes to search for an exact phrase

"primary prevention of cancer"
(heart or cardiac or cardio*) AND arrest -"American Heart Association"