Read by QxMD icon Read

Protein engineering

Zhengwei Wen, Qunying Jia, Xiaojuan Kang, Yongliang Lou, Lilin Zou, Jifeng Yang, Jimin Gao, Liping Han, Xiang Li
Interferon (IFN) regulates immune responses and antitumor activity. Arginine-glycine-aspartic acid (RGD) peptides can specifically bind to integrin αvβ3, a transmembrane receptor that is highly expressed on the surface of various cancer cells. In this study, we expressed recombinant RGD-IFN-α2a-core fusion proteins and assessed their antitumor activity in vitro. Two RGD-IFN-α2a-core fusion proteins and a negative control protein were expressed in vitro. These two RGD-IFN-α2a-core fusion proteins could bind the tumor cell surface specifically and did not bind to normal cells...
October 18, 2016: Anti-cancer Drugs
Ruijie D Teo, Jae Youn Hwang, John Termini, Zeev Gross, Harry B Gray
Corroles are exceptionally promising platforms for the development of agents for simultaneous cancer-targeting imaging and therapy. Depending on the element chelated by the corrole, these theranostic agents may be tuned primarily for diagnostic or therapeutic function. Versatile synthetic methodologies allow for the preparation of amphipolar derivatives, which form stable noncovalent conjugates with targeting biomolecules. These conjugates can be engineered for imaging and targeting as well as therapeutic function within one theranostic assembly...
October 19, 2016: Chemical Reviews
Thavasyappan Thambi, V H Giang Phan, Doo Sung Lee
Stimuli-sensitive injectable polymeric hydrogels are one of the promising delivery vehicles for the controlled release of bioactive agents. In aqueous solutions, these polymers are able to switch sol-to-gel transitions in response to various stimuli including pH, temperature, light, enzyme and magnetic field. Therapeutic agents, including chemotherapeutic agents, protein drugs or cells, are easily mixed with the low-viscous polymer solution at room temperature. Therapeutic-agents-containing solutions are readily injected into target sites through syringe or catheter, which could form hydrogel depot and serve as bioactive molecules release carriers...
October 18, 2016: Macromolecular Rapid Communications
Shohei Hayashi, Yasuharu Satoh, Tetsuro Ujihara, Yusuke Takata, Tohru Dairi
In some microorganisms, polyunsaturated fatty acids (PUFAs) are biosynthesized by PUFA synthases characterized by tandem acyl carrier proteins (ACPs) in subunit A. These ACPs were previously shown to be important for PUFA productivity. In this study, we examined their function in more detail. PUFA productivities increased depending on the number of ACPs without profile changes in each subunit A of eukaryotic and prokaryotic PUFA synthases. We also constructed derivative enzymes from subunit A with 5 × ACPs...
October 18, 2016: Scientific Reports
Logan Horne, Frank R Avilucea, Huifeng Jin, Jared J Barrott, Kyllie Smith-Fry, Yanliang Wang, Bang H Hoang, Kevin B Jones
Previous reports document expression of low-density lipoprotein receptor-related protein 5 (LRP5) in osteosarcoma (OS) tissue. Expression of this Wnt receptor correlated with metastatic disease and poor disease-free survival. Forced expression of dominant-negative LRP5 (dnLRP5), which lacks the membrane binding domain of the native protein and therefore functions as a soluble receptor-sponge for Wnt ligands, reduced in vitro cellular invasion and in vivo xenograft tumor growth for osteosarcoma cell lines. Here, we use a genetically engineered mouse model of osteosarcomagenesis with and without expression of dnLRP5 to assess to what degree tumorigenesis is affected and whether Wnt/β-catenin signaling is circumvented or maintained...
October 2016: Translational Oncology
Aymeric Goyer
Thiamin is essential for human health. While plants are the ultimate source of thiamin in most human diets, staple foods like white rice have low thiamin content. Therefore, populations whose diets are mainly based on low-thiamin staple crops suffer from thiamin deficiency. Biofortification of rice grain by engineering the thiamin biosynthesis pathway has recently been attempted, with up to 5-fold increase in thiamin content in unpolished seeds. However, polished seeds that retain only the starchy endosperm had similar thiamin content than that of non-engineered plants...
October 14, 2016: Current Opinion in Biotechnology
Christine Koehler, Paul F Sauter, Mirella Wawryszyn, Gemma Estrada Girona, Kapil Gupta, Jonathan J M Landry, Markus Hsi-Yang Fritz, Ksenija Radic, Jan-Erik Hoffmann, Zhuo A Chen, Juan Zou, Piau Siong Tan, Bence Galik, Sini Junttila, Peggy Stolt-Bergner, Giancarlo Pruneri, Attila Gyenesei, Carsten Schultz, Moritz Bosse Biskup, Hueseyin Besir, Vladimir Benes, Juri Rappsilber, Martin Jechlinger, Jan O Korbel, Imre Berger, Stefan Braese, Edward A Lemke
We present a baculovirus-based protein engineering method that enables site-specific introduction of unique functionalities in a eukaryotic protein complex recombinantly produced in insect cells. We demonstrate the versatility of this efficient and robust protein production platform, 'MultiBacTAG', (i) for the fluorescent labeling of target proteins and biologics using click chemistries, (ii) for glycoengineering of antibodies, and (iii) for structure-function studies of novel eukaryotic complexes using single-molecule Förster resonance energy transfer as well as site-specific crosslinking strategies...
October 17, 2016: Nature Methods
Bingjie Shi, Juan Li, Xuanling Shi, Wenxu Jia, Yi Wen, Xiongbing Hu, Fengfeng Zhuang, Jianzhong Xi, Linqi Zhang
Transcription activator-like effector nuclease (TALEN) represents a valuable tool for genomic engineering due to its single-nucleotide precision, high nuclease activity and low cytotoxicity. We report here systematic design and characterization of twenty eight novel TALENs targeting multiple regions of CCR5 gene (CCR5-TALEN) which encodes the co-receptor critical for entry of human immunodeficiency virus type I (HIV-1). By systemic characterization of these CCR5-TALENs, we have identified one (CCR5-TALEN-515) with higher nuclease activity, specificity and lower cytotoxicity compared to zinc-finger nuclease (CCR5-ZFN) currently undergoing clinical trials...
October 3, 2016: Journal of Acquired Immune Deficiency Syndromes: JAIDS
Jinwoo Ma, Jaehun Lee, Sang Sub Han, Kyu Hwan Oh, Ki Tae Nam, Jeong-Yun Sun
Protein-based hydrogels have received attention for biomedical applications and tissue engineering because they are biocompatible and abundant. However, the poor mechanical properties of these hydrogels remain a hurdle for practical use. We have developed a highly stretchable and notch-insensitive hydrogel by integrating casein micelles into polyacrylamide (PAAm) networks. In the casein-PAAm hybrid gels, casein micelles and polyacrylamide chains synergistically enhance the mechanical properties. Casein-PAAm hybrid gels are highly stretchable, stretching to more than 35 times their initial length under uniaxial tension...
October 17, 2016: ACS Applied Materials & Interfaces
Ken G Andersson, Maryam Oroujeni, Javad Garousi, Bogdan Mitran, Stefan Ståhl, Anna Orlova, John Löfblom, Vladimir Tolmachev
The epidermal growth factor receptor (EGFR) is overexpressed in a number of malignant tumors and is a molecular target for several specific anticancer antibodies and tyrosine kinase inhibitors. The overexpression of EGFR is a predictive biomarker for response to several therapy regimens. Radionuclide molecular imaging might enable detection of EGFR overexpression by a non-invasive procedure and could be used repeatedly. Affibody molecules are engineered scaffold proteins, which could be selected to have a high affinity and selectivity to predetermined targets...
October 5, 2016: International Journal of Oncology
Harald Marx, Catherine E Minogue, Dhileepkumar Jayaraman, Alicia L Richards, Nicholas W Kwiecien, Alireza F Sihapirani, Shanmugam Rajasekar, Junko Maeda, Kevin Garcia, Angel R Del Valle-Echevarria, Jeremy D Volkening, Michael S Westphall, Sushmita Roy, Michael R Sussman, Jean-Michel Ané, Joshua J Coon
Legumes are essential components of agricultural systems because they enrich the soil in nitrogen and require little environmentally deleterious fertilizers. A complex symbiotic association between legumes and nitrogen-fixing soil bacteria called rhizobia culminates in the development of root nodules, where rhizobia fix atmospheric nitrogen and transfer it to their plant host. Here we describe a quantitative proteomic atlas of the model legume Medicago truncatula and its rhizobial symbiont Sinorhizobium meliloti, which includes more than 23,000 proteins, 20,000 phosphorylation sites, and 700 lysine acetylation sites...
October 17, 2016: Nature Biotechnology
Khawaja Muhammad Imran Bashir, Man-Gi Cho
Antibiotics are routinely used in microalgae culture screening, stock culture maintenance, and genetic transformation. By studying the effect of antibiotics on microalgae growth, we can estimate the least value to inhibit growth of undesired pathogens in algal culture. We studied the effect of kanamycin and tetracycline on the growth and photosynthetic activity of two chlorophyte microalgae, Dictyosphaerium pulchellum and Micractinium pusillum. We measured CFU mL(-1) on agar plates, optical density, fluorescence yields, and photosynthetic inhibition...
2016: BioMed Research International
Khushboo Gualti, Krishna Mohan Poluri
BACKGROUND: Unraveling the comprehensive networks of molecular signaling in various cellular processes and redesign/rewire them as per human wish is the ultimate dream of the biomedical researchers. Recent advances in the experimental and computational biophysics have provided us with enormous amount of protein sequences and a wide variety of structural information. Protein engineering is a fledging field and a creative process to design the target proteins or signaling networks with desirable structure and functions...
October 13, 2016: Recent Patents on Biotechnology
Andrew Kd Younger, Neil Chandra Dalvie, Austin G Rottinghaus, Joshua N Leonard
Efforts to engineer microbial factories have benefitted from mining biological diversity and high throughput synthesis of novel enzymatic ensembles, yet screening and optimizing metabolic pathways remain rate-limiting steps. Metabolite-responsive biosensors may help to address these persistent challenges by enabling the monitoring of metabolite levels in individual cells and metabolite-responsive feedback control. We are currently limited to naturally-evolved biosensors, which are insufficient for monitoring many metabolites of interest...
October 17, 2016: ACS Synthetic Biology
Florian Richter, Ines Fonfara, Boris Bouazza, Charlotte Helene Schumacher, Majda Bratovič, Emmanuelle Charpentier, Andreas Möglich
Sensory photoreceptors have enabled non-invasive and spatiotemporal control of numerous biological processes. Photoreceptor engineering has expanded the repertoire beyond natural receptors, but to date no generally applicable strategy exists towards constructing light-regulated protein actuators of arbitrary function. We hence explored whether the homodimeric Rhodobacter sphaeroides light-oxygen-voltage (LOV) domain (RsLOV) that dissociates upon blue-light exposure can confer light sensitivity onto effector proteins, via a mechanism of light-induced functional site release...
October 15, 2016: Nucleic Acids Research
Jae Dong Kim, Youn Jae Jung, Chang Hee Woo, Young Chan Choi, Ji Suk Choi, Yong Woo Cho
Self-assembled nanoparticles based on PEGylated human α-elastin were prepared as a potential vehicle for sustained protein delivery. The α-elastin was extracted from human adipose tissue and modified with methoxypolyethyleneglycol (mPEG) to control particle size and enhance the colloidal stability. The PEGylated human α-elastin showed sol-to-particle transition with a lower critical solution temperature (LCST) of 25°C-40°C in aqueous media. The PEGylated human α-elastin nanoparticles (PhENPs) showed a narrow size distribution with an average diameter of 330±33nm and were able to encapsulate significant amounts of insulin and bovine serum albumin (BSA) upon simple mixing at low temperature in water and subsequent heating to physiological temperature...
October 7, 2016: Colloids and Surfaces. B, Biointerfaces
Yury A Bochkov, Kelly Watters, Sarmila Basnet, Shakher Sijapati, Marchel Hill, Ann C Palmenberg, James E Gern
Viruses in the rhinovirus C species (RV-C) can cause severe respiratory illnesses in children including pneumonia and asthma exacerbations. A transduced cell line (HeLa-E8) stably expressing the CDHR3-Y529 receptor variant, supports propagation of RV-C after infection. C15 clinical or recombinant isolates replicate in HeLa-E8, however progeny yields are lower than those of related strains of RV-A and RV-B. Serial passaging of C15 in HeLa-E8 resulted in stronger cytopathic effects and increased (≥10-fold) virus binding to cells and progeny yields...
October 13, 2016: Virology
Jessica G Perez, Jessica C Stark, Michael C Jewett
Cell-free protein synthesis (CFPS) technologies have enabled inexpensive and rapid recombinant protein expression. Numerous highly active CFPS platforms are now available and have recently been used for synthetic biology applications. In this review, we focus on the ability of CFPS to expand our understanding of biological systems and its applications in the synthetic biology field. First, we outline a variety of CFPS platforms that provide alternative and complementary methods for expressing proteins from different organisms, compared with in vivo approaches...
October 14, 2016: Cold Spring Harbor Perspectives in Biology
Siran Wang, Chiara E Ghezzi, Rachel Gomes, Rachel E Pollard, James L Funderburgh, David L Kaplan
The interactions between corneal nerve, epithelium, and stroma are essential for maintaining a healthy cornea. Thus, corneal tissue models that more fully mimic the anatomy, mechanical properties and cellular components of corneal tissue would provide useful systems to study cellular interactions, corneal diseases and provide options for improved drug screening. Here a corneal tissue model was constructed to include the stroma, epithelium, and innervation. Thin silk protein film stacks served as the scaffolding to support the corneal epithelial and stromal layers, while a surrounding silk porous sponge supported neuronal growth...
October 4, 2016: Biomaterials
Trey K Sato, Mary Tremaine, Lucas S Parreiras, Alexander S Hebert, Kevin S Myers, Alan J Higbee, Maria Sardi, Sean J McIlwain, Irene M Ong, Rebecca J Breuer, Ragothaman Avanasi Narasimhan, Mick A McGee, Quinn Dickinson, Alex La Reau, Dan Xie, Mingyuan Tian, Jennifer L Reed, Yaoping Zhang, Joshua J Coon, Chris Todd Hittinger, Audrey P Gasch, Robert Landick
The inability of native Saccharomyces cerevisiae to convert xylose from plant biomass into biofuels remains a major challenge for the production of renewable bioenergy. Despite extensive knowledge of the regulatory networks controlling carbon metabolism in yeast, little is known about how to reprogram S. cerevisiae to ferment xylose at rates comparable to glucose. Here we combined genome sequencing, proteomic profiling, and metabolomic analyses to identify and characterize the responsible mutations in a series of evolved strains capable of metabolizing xylose aerobically or anaerobically...
October 2016: PLoS Genetics
Fetch more papers »
Fetching more papers... Fetching...
Read by QxMD. Sign in or create an account to discover new knowledge that matter to you.
Remove bar
Read by QxMD icon Read

Search Tips

Use Boolean operators: AND/OR

diabetic AND foot
diabetes OR diabetic

Exclude a word using the 'minus' sign

Virchow -triad

Use Parentheses

water AND (cup OR glass)

Add an asterisk (*) at end of a word to include word stems

Neuro* will search for Neurology, Neuroscientist, Neurological, and so on

Use quotes to search for an exact phrase

"primary prevention of cancer"
(heart or cardiac or cardio*) AND arrest -"American Heart Association"