Read by QxMD icon Read


Marek Ladislav, Jiri Cerny, Jan Krusek, Martin Horak, Ales Balik, Ladislav Vyklicky
N-methyl-D-aspartate receptors (NMDARs) mediate excitatory synaptic transmission in the central nervous system, underlie the induction of synaptic plasticity, and their malfunction is associated with human diseases. Native NMDARs are tetramers composed of two obligatory GluN1 subunits and various combinations of GluN2A-D or, more rarely, GluN3A-B subunits. Each subunit consists of an amino-terminal, ligand-binding, transmembrane and carboxyl-terminal domain. The ligand-binding and transmembrane domains are interconnected via polypeptide chains (linkers)...
2018: Frontiers in Molecular Neuroscience
Jin Hwan Lee, James Ya Zhang, Zheng Zachory Wei, Shan Ping Yu
The N-methyl-d-aspartate receptor (NMDAR) has been implicated in the pathophysiology of neurological diseases, such as schizophrenia, autism spectrum disorders (ASD), and Alzheimer's disease (AD), whose unique clinical hallmark is a constellation of impaired social and/or cognitive behaviors. GluN3A (NR3A) is a unique inhibitory subunit in the NMDAR complex. The role of GluN3A in social behavioral activities is obscure. In this study, we sought to evaluate altered social activities in adult GluN3A knockout (KO) mice...
March 16, 2018: Experimental Neurology
Svenja Pachernegg, Sebastian Eilebrecht, Elke Eilebrecht, Hendrik Schöneborn, Sebastian Neumann, Arndt G Benecke, Michael Hollmann
For years, GluN3A was solely considered to be a dominant-negative modulator of NMDARs, since its incorporation into receptors alters hallmark features of conventional NMDARs composed of GluN1/GluN2 subunits. Only recently, increasing evidence has accumulated that GluN3A plays a more diversified role. It is considered to be critically involved in the maturation of glutamatergic synapses, and it might act as a molecular brake to prevent premature synaptic strengthening. Its expression pattern supports a putative role during neural development, since GluN3A is predominantly expressed in early pre- and postnatal stages...
2018: PloS One
Jiali Chen, Yunlong Ma, Rongli Fan, Zhongli Yang, Ming D Li
Drug dependence is a chronic brain disease with harmful consequences for both individual users and society. Glutamate is a primary excitatory neurotransmitter in the brain, and both in vivo and in vitro experiments have implicated N-methyl-D-aspartate (NMDA) receptor, a glutamate receptor, as an element in various types of addiction. Recent findings from genetics-based approaches such as genome-wide linkage, candidate gene association, genome-wide association (GWA), and next-generation sequencing have demonstrated the significant association of NMDA receptor subunit genes such as GluN3A, GluN2B, and GluN2A with various addiction-related phenotypes...
February 10, 2018: Molecular Neurobiology
Na Wei, Yang-Ting Dong, Jie Deng, Ya Wang, Xiao-Lan Qi, Wen-Feng Yu, Yan Xiao, Jian-Jiang Zhou, Zhi-Zhong Guan
Expressions of N-methyl-d-aspartic acid receptors (NMDARs) in the brains of rats and primary neurons exposed to high fluoride were investigated. Sprague-Dawley rats were divided randomly into a fluorosis group (50ppm fluoride in the drinking water for 6 months) and controls (<0.5ppm fluoride) and the offspring from these rats sacrificed on postnatal days 1, 7, 14, 21 and 28. The primary cultured neurons from the hippocampus of neonatal rats were treated with 5 and 50ppm fluoride for 48h. NMDAR subunits at protein or mRNA levels were quantified by Western blotting or real-time PCR...
January 2018: Journal of Trace Elements in Medicine and Biology
Feng Yi, Stephen F Traynelis, Kasper B Hansen
The NMDA-type ionotropic glutamate receptors play pivotal roles in many brain functions, but are also involved in numerous brain disorders. Seven NMDA receptor subunits exist (GluN1, GluN2A-D, and GluN3A-B) that assemble into a diverse array of tetrameric receptor subtypes with distinct functional properties and physiological roles. Most NMDA receptors are composed of two GluN1 and two GluN2 subunits, which can assemble into four diheteromeric receptor subtypes composed of GluN1 and one type of GluN2 subunit (e...
2017: Methods in Molecular Biology
Kirstie A Cummings, Sophie Belin, Gabriela K Popescu
N-methyl-d-aspartate (NMDA) receptors assembled from GluN1 and GluN3 subunits are unique in that they form glycine-gated excitatory channels that are insensitive to glutamate and NMDA. Alternative splicing of the GluN1 subunit mRNA results in eight variants with regulated expression patterns and post-translational modifications. Here we investigate the role of residues in the GluN1 C-terminal alternatively spliced cassettes in receptor gating and modulation. We measured whole-cell currents from recombinant GluN1/GluN3A receptors expressed in HEK293 cells that differed in the sequence of their GluN1 C-terminal tail...
June 2017: Neuropharmacology
Amol K Bhandage, Zhe Jin, Charlotte Hellgren, Sergiy V Korol, Krzysztof Nowak, Louise Williamsson, Inger Sundström-Poromaa, Bryndis Birnir
The amino acid glutamate opens cation permeable ion channels, the iGlu receptors. These ion channels are abundantly expressed in the mammalian brain where glutamate is the main excitatory neurotransmitter. The neurotransmitters and their receptors are being increasingly detected in the cells of immune system. Here we examined the expression of the 18 known subunits of the iGlu receptors families; α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA), kainate, N-methyl-d-aspartate (NMDA) and delta in human peripheral blood mononuclear cells (PBMCs)...
April 15, 2017: Journal of Neuroimmunology
Meaghan Creed, Jennifer Kaufling, Giulia R Fois, Marion Jalabert, Tifei Yuan, Christian Lüscher, Francois Georges, Camilla Bellone
Potentiation of excitatory inputs onto dopamine neurons of the ventral tegmental area (VTA) induced by cocaine exposure allows remodeling of the mesocorticolimbic circuitry, which ultimately drives drug-adaptive behavior. This potentiation is mediated by changes in NMDAR and AMPAR subunit composition. It remains unknown how this synaptic plasticity affects the activity of dopamine neurons. Here, using rodents, we demonstrate that a single cocaine injection increases the firing rate and bursting activity of VTA dopamine neurons, and that these increases persist for 7 d...
October 19, 2016: Journal of Neuroscience: the Official Journal of the Society for Neuroscience
Minela Hadzic, Alexander Jack, Petra Wahle
A multitude of 18 iGluR receptor subunits, many of which are diversified by splicing and RNA editing, localize to >20 excitatory and inhibitory neocortical neuron types defined by physiology, morphology, and transcriptome in addition to various types of glial, endothelial, and blood cells. Here we have compiled the published expression of iGluR subunits in the areas and cell types of developing and adult cortex of rat, mouse, carnivore, bovine, monkey, and human as determined with antibody- and mRNA-based techniques...
March 1, 2017: Journal of Comparative Neurology
Isabel Pérez-Otaño, Rylan S Larsen, John F Wesseling
GluN3-containing NMDA receptors (GluN3-NMDARs) are rarer than the 'classical' NMDARs, which are composed solely of GluN1 and GluN2 subunits, and have non-conventional biophysical, trafficking and signalling properties. In the CNS, they seem to have important roles in delaying synapse maturation until the arrival of sensory experience and in targeting non-used synapses for pruning. The reactivation of GluN3A expression at inappropriate ages may underlie maladaptive synaptic rearrangements observed in addiction, neurodegenerative diseases and other major brain disorders...
October 2016: Nature Reviews. Neuroscience
Asya Makhro, Qinghai Tian, Lars Kaestner, Dmitry Kosenkov, Giuseppe Faggian, Max Gassmann, Colin Schwarzwald, Anna Bogdanova
This study focuses on characterization of the cardiac N-methyl D-aspartate receptors (NMDARs) as a target for endogenous and synthetic agonists and antagonists. Using isolated perfused rat hearts, we have shown that intracoronary administration of the NMDAR agonists and antagonists has a pronounced effect on autonomous heart function. Perfusion of rat hearts with autologous blood supplemented with NMDAR agonists was associated with induction of tachycardia, sinus arrhythmia, and ischemia occurring within physiological plasma concentration range for glutamate and glycine...
November 2016: Journal of Cardiovascular Pharmacology
Kashif Mahfooz, Sonia Marco, Rebeca Martínez-Turrillas, Mathan K Raja, Isabel Pérez-Otaño, John F Wesseling
Age-inappropriate expression of juvenile NMDA receptors (NMDARs) containing GluN3A subunits has been linked to synapse loss and death of spiny projection neurons of the striatum (SPNs) in Huntington's disease (HD). Here we show that suppressing GluN3A expression prevents a multivariate synaptic transmission phenotype that precedes morphological signs at early prodromal stages. We start by confirming that afferent fiber stimulation elicits larger synaptic responses mediated by both AMPA receptors and NMDARs in SPNs in the YAC128 mouse model of HD...
September 2016: Neurobiology of Disease
Kirstie A Cummings, Gabriela K Popescu
N-methyl-D-aspartate (NMDA) receptors are glutamate- and glycine-gated channels composed of two GluN1 and two GluN2 or/and GluN3 subunits. GluN3A expression is developmentally regulated, and changes in this normal pattern of expression, which occur in several brain disorders, alter synaptic maturation and function by unknown mechanisms. Uniquely within the NMDA receptor family, GluN1/GluN3 receptors produce glycine-gated deeply desensitising currents that are insensitive to glutamate and NMDA; these currents remain poorly characterised and their cellular functions are unknown...
March 22, 2016: Scientific Reports
Michelle R Lyons, Liang-Fu Chen, Jie V Deng, Caitlin Finn, Andreas R Pfenning, Aditi Sabhlok, Kelli M Wilson, Anne E West
Neuronal activity sculpts brain development by inducing the transcription of genes such as brain-derived neurotrophic factor (Bdnf) that modulate the function of synapses. Sensory experience is transduced into changes in gene transcription via the activation of calcium signaling pathways downstream of both L-type voltage-gated calcium channels (L-VGCCs) and NMDA-type glutamate receptors (NMDARs). These signaling pathways converge on the regulation of transcription factors including calcium-response factor (CaRF)...
April 2016: Journal of Neurochemistry
Ivana Mesic, Christian Madry, Kirsten Geider, Max Bernhard, Heinrich Betz, Bodo Laube
N-methyl-d-aspartate (NMDA) receptors composed of glycine-binding GluN1 and GluN3 subunits function as excitatory glycine receptors that respond to agonist application only with a very low efficacy. Binding of glycine to the high-affinity GluN3 subunits triggers channel opening, whereas glycine binding to the low-affinity GluN1 subunits causes an auto-inhibition of the maximal glycine-inducible receptor current (Imax). Hence, competitive antagonists of the GluN1 subunit strongly potentiate glycine responses of wild type (wt) GluN1/GluN3 receptors...
June 2016: Neuropharmacology
Karen Siaw-Ling Wee, Francis Chee Kuan Tan, Yoke-Ping Cheong, Sanjay Khanna, Chian-Ming Low
N-Methyl-D-aspartate receptors are localized to synaptic and extrasynaptic sites of dendritic spines and shafts. Here, the ontogenic profiles of GluN3A and GluN3B subunits in the rat brain were determined. A developmental switch from GluN3A to GluN3B proteins was detected within the first two postnatal weeks of crude synaptosomes prepared from forebrain and midbrain. Further fractionation of crude synaptosomes revealed the preferential localization of GluN3B to synaptic regions from P7 onwards. Immunolabeling and biochemical fractionation of rat P7 cultured hippocampal neurons showed that GluN3B was predominantly at synaptic sites...
February 2016: Neurochemical Research
Ileana Micu, Jason R Plemel, Celia Lachance, Juliane Proft, Andrew J Jansen, Karen Cummins, Jan van Minnen, Peter K Stys
Myelinated axons efficiently transmit information over long distances. The apposed myelin sheath confers favorable electrical properties, but restricts access of the axon to its extracellular milieu. Therefore, axonal metabolic support may require specific axo-myelinic communication. Here we explored activity-dependent glutamate-mediated signaling from axon to myelin. 2-Photon microscopy was used to image Ca(2+) changes in myelin in response to electrical stimulation of optic nerve axons ex vivo. We show that optic nerve myelin responds to axonal action potentials by a rise in Ca(2+) levels mediated by GluN2D and GluN3A-containing NMDA receptors...
February 2016: Experimental Neurology
Chengwen Zhou, Hongyu Sun, Peter M Klein, Frances E Jensen
Neonatal seizures are commonly caused by hypoxic and/or ischemic injury during birth and can lead to long-term epilepsy and cognitive deficits. In a rodent hypoxic seizure (HS) model, we have previously demonstrated a critical role for seizure-induced enhancement of the AMPA subtype of glutamate receptor (GluA) in epileptogenesis and cognitive consequences, in part due to GluA maturational upregulation of expression. Similarly, as the expression and function of the N-Methyl-D-aspartate (NMDA) subtype of glutamate receptor (GluN) is also developmentally controlled, we examined how early life seizures during the critical period of synaptogenesis could modify GluN development and function...
2015: Frontiers in Cellular Neuroscience
Nobuki Nakanishi, Yeon-Joo Kang, Shichun Tu, Scott R McKercher, Eliezer Masliah, Stuart A Lipton
HIV-associated neurocognitive disorder (HAND) consists of motor and cognitive dysfunction in a relatively large percentage of patients with AIDS. Prior work has suggested that at least part of the neuronal and synaptic damage observed in HAND may occur due to excessive stimulation of NMDA-type glutamate receptors (NMDARs). Here, we compared pharmacological and genetic manipulation of NMDAR activity using an improved derivative of the NMDAR antagonist memantine, termed NitroMemantine, and the modulatory NMDAR subunit GluN3A in the HIV/gp120 transgenic (tg) mouse model of HAND...
January 2016: Journal of Molecular Neuroscience: MN
Fetch more papers »
Fetching more papers... Fetching...
Read by QxMD. Sign in or create an account to discover new knowledge that matter to you.
Remove bar
Read by QxMD icon Read

Search Tips

Use Boolean operators: AND/OR

diabetic AND foot
diabetes OR diabetic

Exclude a word using the 'minus' sign

Virchow -triad

Use Parentheses

water AND (cup OR glass)

Add an asterisk (*) at end of a word to include word stems

Neuro* will search for Neurology, Neuroscientist, Neurological, and so on

Use quotes to search for an exact phrase

"primary prevention of cancer"
(heart or cardiac or cardio*) AND arrest -"American Heart Association"