Read by QxMD icon Read


Zhuobin Liang, Sham Sunder, Sivakumar Nallasivam, Thomas E Wilson
Non-homologous end joining (NHEJ) is the main repair pathway for DNA double-strand breaks (DSBs) in cells with limited 5' resection. To better understand how overhang polarity of chromosomal DSBs affects NHEJ, we made site-specific 5'-overhanging DSBs (5' DSBs) in yeast using an optimized zinc finger nuclease at an efficiency that approached HO-induced 3' DSB formation. When controlled for the extent of DSB formation, repair monitoring suggested that chromosomal 5' DSBs were rejoined more efficiently than 3' DSBs, consistent with a robust recruitment of NHEJ proteins to 5' DSBs...
April 7, 2016: Nucleic Acids Research
Alvaro Galli, Cecilia Y Chan, Liubov Parfenova, Tiziana Cervelli, Robert H Schiestl
Non-homologous end joining (NHEJ) directly joins two broken DNA ends without sequence homology. A distinct pathway called microhomology-mediated end joining (MMEJ) relies on a few base pairs of homology between the recombined DNA. The majority of DNA double-strand breaks caused by endogenous oxygen species or ionizing radiation contain damaged bases that hinder direct religation. End processing is required to remove mismatched nucleotides and fill in gaps during end joining of incompatible ends. POL3 in Saccharomyces cerevisiae encodes polymerase δ that is required for DNA replication and other DNA repair processes...
November 2015: Mutagenesis
Hui Yang, Yoshihiro Matsumoto, Kelly M Trujillo, Susan P Lees-Miller, Mary Ann Osley, Alan E Tomkinson
DNA double strand breaks (DSB)s often require end processing prior to joining during their repair by non-homologous end joining (NHEJ). Although the yeast proteins, Pol4, a Pol X family DNA polymerase, and Rad27, a nuclease, participate in the end processing reactions of NHEJ, the mechanisms underlying the recruitment of these factors to DSBs are not known. Here we demonstrate that Nej1, a NHEJ factor that interacts with and modulates the activity of the NHEJ DNA ligase complex (Dnl4/Lif1), physically and functionally interacts with both Pol4 and Rad27...
July 2015: DNA Repair
Guillermo Sastre-Moreno, Arancha Sánchez, Verónica Esteban, Luis Blanco
7,8-Dihydro-8-oxo-deoxyguanosine (8oxodG) is a highly premutagenic DNA lesion due to its ability to mispair with adenine. Schizosaccharomyces pombe lacks homologs for relevant enzymes that repair 8oxodG, which suggests that this lesion could be persistent and must be tolerated. Here we show that SpPol4, the unique PolX in fission yeast, incorporates ATP opposite 8oxodG almost exclusively when all nucleotides (ribos and deoxys) are provided at physiological concentrations. Remarkably, this SpPol4-specific reaction could also occur during the NHEJ of DSBs...
September 2014: Nucleic Acids Research
Jose F Ruiz, Benjamin Pardo, Guillermo Sastre-Moreno, Andrés Aguilera, Luis Blanco
DNA double-strand breaks (DSBs) are one of the most dangerous DNA lesions, since their erroneous repair by nonhomologous end-joining (NHEJ) can generate harmful chromosomal rearrangements. PolX DNA polymerases are well suited to extend DSB ends that cannot be directly ligated due to their particular ability to bind to and insert nucleotides at the imperfect template-primer structures formed during NHEJ. Herein, we have devised genetic assays in yeast to induce simultaneous DSBs in different chromosomes in vivo...
July 2013: PLoS Genetics
Peng Li, Jun Li, Ming Li, Kun Dou, Mei-Jun Zhang, Fang Suo, Li-Lin Du
Non-homologous end joining (NHEJ) is an important mechanism for repairing DNA double-strand breaks (DSBs). The fission yeast Schizosaccharomyces pombe has a conserved set of NHEJ factors including Ku, DNA ligase IV, Xlf1, and Pol4. Their roles in chromosomal DSB repair have not been directly characterized before. Here we used HO endonuclease to create a specific chromosomal DSB in fission yeast and examined the imprecise end joining events allowing cells to survive the continuous expression of HO. Our analysis showed that cell survival was significantly reduced in mutants defective for Ku, ligase IV, or Xlf1...
February 1, 2012: DNA Repair
Karim Bahmed, Aman Seth, Karin C Nitiss, John L Nitiss
Non-homologous end-joining (NHEJ) is a critical error-prone pathway of double strand break repair. We recently showed that tyrosyl DNA phosphodiesterase 1 (Tdp1) regulates the accuracy of NHEJ repair junction formation in yeast. We assessed the role of other enzymes in the accuracy of junction formation using a plasmid repair assay. We found that exonuclease 1 (Exo1) is important in assuring accurate junction formation during NHEJ. Like tdp1Δ mutants, exo1Δ yeast cells repairing plasmids with 5'-extensions can produce repair junctions with templated insertions...
February 2011: Nucleic Acids Research
Cecilia Y Chan, Alvaro Galli, Robert H Schiestl
Nonhomologous end joining connects DNA ends in the absence of extended sequence homology and requires removal of mismatched DNA ends and gap-filling synthesis prior to a religation step. Pol4 within the Pol X family is the only polymerase known to be involved in end processing during nonhomologous end joining in yeast. The Saccharomyces cerevisiae POL3/CDC2 gene encodes polymerase delta that is involved in DNA replication and other DNA repair processes. Here, we show that POL3 is involved in nonhomologous end joining using a plasmid-based end-joining assay in yeast, in which the pol3-t mutation caused a 1...
September 1, 2008: DNA Repair
Shun-Fu Tseng, Abram Gabriel, Shu-Chun Teng
Genotoxic agents that cause double-strand breaks (DSBs) often generate damage at the break termini. Processing enzymes, including nucleases and polymerases, must remove damaged bases and/or add new bases before completion of repair. Artemis is a nuclease involved in mammalian nonhomologous end joining (NHEJ), but in Saccharomyces cerevisiae the nucleases and polymerases involved in NHEJ pathways are poorly understood. Only Pol4 has been shown to fill the gap that may form by imprecise pairing of overhanging 3' DNA ends...
April 2008: PLoS Genetics
James M Daley, Thomas E Wilson
Nonhomologous end joining (NHEJ) directly rejoins DNA double-strand breaks (DSBs) when recombination is not possible. In Saccharomyces cerevisiae, the DNA polymerase Pol4 is required for gap filling when a short 3' overhang must prime DNA synthesis. Here, we examined further end variations to test specific hypotheses regarding Pol4 usage in NHEJ in vivo. Surprisingly, Pol4 dependence at 3' overhangs was reduced when a nonhomologous 5' flap nucleotide was present across from the gap, even though the mismatched nucleotide was corrected, not incorporated...
January 1, 2008: DNA Repair
Kihoon Lee, Sang Eun Lee
Microhomology-mediated end joining (MMEJ) joins DNA ends via short stretches [5-20 nucleotides (nt)] of direct repeat sequences, yielding deletions of intervening sequences. Non-homologous end joining (NHEJ) and single-strand annealing (SSA) are other error prone processes that anneal single-stranded DNA (ssDNA) via a few bases (<5 nt) or extensive direct repeat homologies (>20 nt). Although the genetic components involved in MMEJ are largely unknown, those in NHEJ and SSA are characterized in some detail...
August 2007: Genetics
Anabelle Decottignies
Two DNA repair pathways are known to mediate DNA double-strand-break (DSB) repair: homologous recombination (HR) and nonhomologous end joining (NHEJ). In addition, a nonconservative backup pathway showing extensive nucleotide loss and relying on microhomologies at repair junctions was identified in NHEJ-deficient cells from a variety of organisms and found to be involved in chromosomal translocations. Here, an extrachromosomal assay was used to characterize this microhomology-mediated end-joining (MMEJ) mechanism in fission yeast...
July 2007: Genetics
Benjamin Pardo, Emilie Ma, Stéphane Marcand
In yeast, the nonhomologous end joining pathway (NHEJ) mobilizes the DNA polymerase Pol4 to repair DNA double-strand breaks when gap filling is required prior to ligation. Using telomere-telomere fusions caused by loss of the telomeric protein Rap1 and double-strand break repair on transformed DNA as assays for NHEJ between fully uncohesive ends, we show that Pol4 is able to extend a 3'-end whose last bases are mismatched, i.e., mispaired or unpaired, to the template strand.
April 2006: Genetics
Catherine H Sterling, Joann B Sweasy
The DNA polymerase 4 protein (Pol4) of Saccharomyces cerevisiae is a member of the X family of DNA polymerases whose closest human relative appears to be DNA polymerase lambda. Results from previous genetic studies conflict over the role of Pol4 in vivo. Here we show that deletion of Pol4 in a diploid strain of the SK1 genetic background results in sensitivity to methyl methanesulfonate (MMS). However, deletion of Pol4 in other strain backgrounds and in haploid strains does not yield an observable phenotype...
January 2006: Genetics
James M Daley, Renee L Vander Laan, Aswathi Suresh, Thomas E Wilson
DNA double strand breaks (DSBs) can be rejoined directly by the nonhomologous end-joining (NHEJ) pathway of repair. Nucleases and polymerases are required to promote accurate NHEJ when the terminal bases of the DSB are damaged. The same enzymes also participate in imprecise rejoining and joining of incompatible ends, important mutagenic events. Previous work has shown that the Pol X family polymerase Pol4 is required for some but not all NHEJ events that require gap filling in Saccharomyces cerevisiae. Here, we systematically analyzed DSB end configurations and found that gaps on both strands and overhang polarity are the principal factors that determine whether a joint requires Pol4...
August 12, 2005: Journal of Biological Chemistry
Erich Heidenreich, Herfried Eisler
There is a strong selective pressure favoring adaptive mutations which relieve proliferation-limiting adverse living conditions. Due to their importance for evolution and pathogenesis, we are interested in the mechanisms responsible for the formation of such adaptive, gain-of-fitness mutations in stationary-phase cells. During previous studies on the occurrence of spontaneous reversions of an auxotrophy-causing frameshift allele in the yeast Saccharomyces cerevisiae, we noticed that about 50% of the adaptive reversions depended on a functional non-homologous end joining (NHEJ) pathway of DNA double-strand break (DSB) repair...
November 22, 2004: Mutation Research
Hui-Min Tseng, Alan E Tomkinson
The repair of DNA double-strand breaks is critical for maintaining genetic stability. In the non-homologous end-joining pathway, DNA ends are brought together by end-bridging factors. However, most in vivo DNA double-strand breaks have terminal structures that cannot be directly ligated. Thus, the DNA ends are aligned using short regions of sequence microhomology followed by processing of the aligned DNA ends by DNA polymerases and nucleases to generate ligatable termini. Genetic studies in Saccharomyces cerevisiae have implicated the DNA polymerase Pol4 and the DNA structure-specific endonuclease FEN-1(Rad27) in the processing of DNA ends to be joined by Dnl4/Lif1...
November 12, 2004: Journal of Biological Chemistry
François Lecointe, Igor V Shevelev, Adriana Bailone, Suzanne Sommer, Ulrich Hübscher
DNA polymerases of the X family have been implicated in a variety of DNA repair processes in eukaryotes. Here we show that Deinococcus radiodurans, a highly radioresistant bacterium able to mend hundreds of radiation-induced double-stranded DNA breaks, expresses a DNA polymerase belonging to the X family. This novel bacterial polymerase, named PolX(Dr), was identified as the product of the Deinococcal DR0467 gene. The purified PolX(Dr) protein possesses a DNA polymerase activity that is stimulated by MnCl2, a property of the X family DNA polymerases...
September 2004: Molecular Microbiology
Megan McInnis, Gina O'Neill, Kärin Fossum, Michael S Reagan
The cellular role of the DNA polymerase encoded by the Saccharomyces cerevisiae POL4 gene is unclear. We have used an epistasis analysis to investigate whether the proteins encoded by the POL4 and RAD27 genes participate in alternative, non-redundant subpathways of DNA base excision repair (BER). We constructed strains in which the genes were deleted singly or in combination and have examined their sensitivity to DNA damaging agents as well as spontaneous mutation frequency. The double deletion strain is no more sensitive to damaging agents and has no higher spontaneous mutation frequency than the most sensitive single mutant...
April 29, 2002: DNA Repair
Hui-Min Tseng, Alan E Tomkinson
Genetic studies have implicated the Saccharomyces cerevisiae POL4 gene product in the repair of DNA double-strand breaks by nonhomologous end joining. Here we show that Pol4 preferentially catalyzes DNA synthesis on small gaps formed by the alignment of linear duplex DNA molecules with complementary ends, a DNA substrate specificity that is compatible with its predicted role in the repair of DNA double-strand breaks. Pol4 also interacts directly with the Dnl4 subunit of the Dnl4-Lif1 complex via its N-terminal BRCT domain...
November 22, 2002: Journal of Biological Chemistry
Fetch more papers »
Fetching more papers... Fetching...
Read by QxMD. Sign in or create an account to discover new knowledge that matter to you.
Remove bar
Read by QxMD icon Read

Search Tips

Use Boolean operators: AND/OR

diabetic AND foot
diabetes OR diabetic

Exclude a word using the 'minus' sign

Virchow -triad

Use Parentheses

water AND (cup OR glass)

Add an asterisk (*) at end of a word to include word stems

Neuro* will search for Neurology, Neuroscientist, Neurological, and so on

Use quotes to search for an exact phrase

"primary prevention of cancer"
(heart or cardiac or cardio*) AND arrest -"American Heart Association"